Global Optimization with SCIP 8

Ksenia Bestuzheva, Antonia Chmiela, Benjamin Müller, Felipe Serrano, Stefan Vigerske, Fabian Wegscheider

HUGO 2022 – XV. Workshop on Global Optimization September 8th

TOC

Introduction

SCIP 7 (and before)

SCIP 8: updated framework

MINLP features in SCIP

Benchmark

Introduction

What is SCIP?

SCIP (Solving Constraint Integer Programs) ...

- provides a full-scale MIP and MINLP solver,
- incorporates
 - MIP features (cutting planes, LP relaxation), and
 - MINLP features (spatial branch-and-bound, NLP relaxation)
 - CP features (domain propagation),
 - SAT-solving features (conflict analysis, restarts),
- is a branch-cut-and-price framework,
- has a modular structure via plugins,
- is free for academic purposes,
- and available in source-code under https://www.scipopt.org

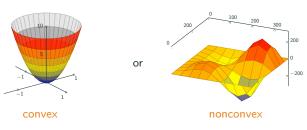
Mixed-Integer Nonlinear Programming

$$\min c^{\mathsf{T}} x$$
s.t. $g_k(x) \le 0$ $\forall k \in [m]$

$$x_i \in \mathbb{Z} \qquad \forall i \in \mathcal{I} \subseteq [n]$$

$$x_i \in [\ell_i, u_i] \qquad \forall i \in [n]$$

The functions $g_k: [\ell, u] \to \mathbb{R}$ can be



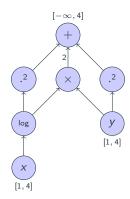
and are given in algebraic form.

Expression Trees

The algebraic structure of nonlinear constraints is stored in a directed acyclic graph:

- nodes: variables, operations
- arcs: flow of computation

$$\log(x)^{2} + 2\log(x)y + y^{2} \in [-\infty, 4]$$
$$x, y \in [1, 4]$$



Branch and Bound

SCIP solves MINLPs by spatial Branch & Bound.

LP relaxation via convexification and linearization:

convex functions concave functions
$$x^k$$
 $(k \in 2\mathbb{Z} + 1)$

Branch and Bound

SCIP solves MINLPs by spatial Branch & Bound.

LP relaxation via convexification and linearization:

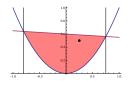
convex functions

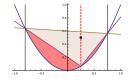
concave functions

 $x^k \quad (k \in 2\mathbb{Z} + 1)$

 $x \cdot y$

Branching on variables in violated nonconvex constraints:





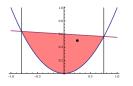
Branch and Bound

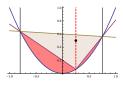
SCIP solves MINLPs by spatial Branch & Bound.

LP relaxation via convexification and linearization:

convex functions concave functions x^k $(k \in 2\mathbb{Z}+1)$ $x \cdot y$

Branching on variables in violated nonconvex constraints:





...and bound tightening (FBBT, OBBT), primal heuristics (e.g., sub-NLP/MIP/MINLP), other special techniques

SCIP 7 (and before)

Reformulation in Presolve

Goal: Reformulate constraints such that only elementary cases (convex, concave, odd power, quadratic) remain by introducing new variables and new constraints.

Consider

$$\min z$$

s.t.
$$\exp(\ln(1000) + 1 + xy) \le z$$

 $x^2 + y^2 \le 2$

Reformulation in Presolve

Goal: Reformulate constraints such that only elementary cases (convex, concave, odd power, quadratic) remain by introducing new variables and new constraints.

Consider

$$\min z$$

s.t.
$$\exp(\ln(1000) + 1 + xy) \le z$$

 $x^2 + y^2 \le 2$

Reformulation takes apart $\exp(\ln(1000) + 1 + xy)$, thus SCIP actually solves the extended formulation

s.t.
$$\exp(w) \le z$$

 $\ln(1000) + 1 + xy = w$
 $x^2 + y^2 \le 2$

Issue with explicit reformulation

SCIP solves reformulated problem fine:

SCIP Status : problem is solved [optimal solution found]

Solving Time (sec) : 0.08

Solving Nodes : 5

Primal Bound : +9.99999656552062e+02 (3 solutions)

Dual Bound : +9.99999656552062e+02

 $\mbox{\tt Gap}$: 0.00 %

Issue with explicit reformulation

SCIP solves reformulated problem fine:

```
SCIP Status : problem is solved [optimal solution found]
```

Solving Time (sec): 0.08 Solving Nodes: 5

Primal Bound : +9.99999656552062e+02 (3 solutions)

Dual Bound : +9.99999656552062e+02

Gap : 0.00 %

Solution
$$(x, y, z, w) = (-1.000574549, 0.999425451, 999.999656552, 6.907754936)$$
 looks ok:

min z	Violation
s.t. $\exp(w) \le z$	$0.4659\cdot 10^{-6} \leq \mathtt{feastol} \checkmark$
$\ln(1000) + 1 + xy = w$	$0.6731\cdot 10^{-6} \leq ext{feastol} \checkmark$
$x^2 + y^2 \le 2$	$0.6602\cdot 10^{-6} \leq ext{feastol} \checkmark$

Issue with explicit reformulation

SCIP solves reformulated problem fine:

```
SCIP Status : problem is solved [optimal solution found]
```

Solving Time (sec): 0.08 Solving Nodes: 5

Primal Bound : +9.99999656552062e+02 (3 solutions)

Dual Bound : +9.99999656552062e+02

Gap : 0.00 %

Solution
$$(x, y, z, w) = (-1.000574549, 0.999425451, 999.999656552, 6.907754936)$$
 looks ok:

min z Violation
$$\text{s.t. } \exp(w) \leq z \qquad \qquad 0.4659 \cdot 10^{-6} \leq \text{feastol } \checkmark$$

$$\ln(1000) + 1 + x \, y = w \qquad \qquad 0.6731 \cdot 10^{-6} \leq \text{feastol } \checkmark$$

$$x^2 + y^2 \leq 2 \qquad \qquad 0.6602 \cdot 10^{-6} \leq \text{feastol } \checkmark$$

However, original $\exp(\ln(1000) + 1 + xy) \le z$ has too large violation:

```
[nonlinear] <e1>: \exp((7.9077552789821368151 + 1 (<x> * <y>)))-1<z>[C] <= 0; violation: right hand side is violated by 0.000673453314561812 best solution is not feasible in original problem
```

Problem with classic approach

- ⇒ Explicit reformulation of constraints ...
 - ... loses the connection to the original problem.
 - ... loses distinction between original and auxiliary variables. Thus, we may branch on auxiliary variables.
 - ... prevents simultaneous exploitation of overlapping structures.

SCIP 8: updated framework

Main Ideas

Avoid explicit split-up of constraints.

- introduce extended formulation as annotation to the original formulation
- use extended formulation for relaxation
- use original formulation for feasibility checking
- to resolve infeasibility in original constraints, tighten relaxation of extended formulation

Main Ideas

Avoid explicit split-up of constraints.

- introduce extended formulation as annotation to the original formulation
- use extended formulation for relaxation
- use original formulation for feasibility checking
- to resolve infeasibility in original constraints, tighten relaxation of extended formulation

Everything nonlinear is an expression.

- represent all nonlinear constraints in one expression graph (DAG)
- all algorithms (check, separation, propagation, etc.) work on the same expression graph, no more specialized nonlinear constraints

Main Ideas

Avoid explicit split-up of constraints.

- introduce extended formulation as annotation to the original formulation
- use extended formulation for relaxation
- use original formulation for feasibility checking
- to resolve infeasibility in original constraints, tighten relaxation of extended formulation

Everything nonlinear is an expression.

- represent all nonlinear constraints in one expression graph (DAG)
- all algorithms (check, separation, propagation, etc.) work on the same expression graph, no more specialized nonlinear constraints
- separate expression operators (+, ×) and high-level structures (quadratic, semi-continuous, second order cone, etc.)

Expression Handlers

Each operator type $(+, \times, pow, etc.)$ is implemented by an expression handler, which can provide a number of callbacks:

- evaluate and differentiate expression w.r.t. operands
- interval evaluation and tighten bounds on operands
- provide linear under- and over-estimators
- inform about curvature, monotonicity, integrality
- simplify, compare, print, parse, hash, copy, etc.

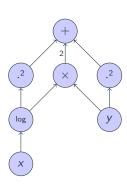
Expression handlers are like other SCIP plugins. New ones can be added by users (YOU!).

Available handler: abs, cos, entropy, exp, log, pow, product, signpow, sin, sum, value, var

Constraint:

$$\log(x)^2 + 2\log(x)y + y^2 \le 4$$

This formulation is used to check feasibility and presolve.



Constraint:

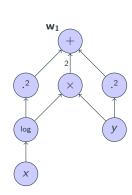
$$\log(x)^2 + 2\log(x)y + y^2 \le 4$$

This formulation is used to check feasibility and presolve.

Extended Formulation:

$$w_1 \le 4$$

 $\log(x)^2 + 2\log(x)y + y^2 = w_1$



Constraint:

$$\log(x)^2 + 2\log(x)y + y^2 \le 4$$

This formulation is used to check feasibility and presolve.

Extended Formulation:

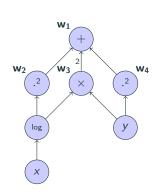
$$w_1 \le 4$$

$$w_2 + 2w_3 + w_4 = w_1$$

$$\log(x)^2 = w_2$$

$$\log(x)y = w_3$$

$$y^2 = w_4$$



Constraint:

$$\log(x)^2 + 2\log(x)y + y^2 \le 4$$

This formulation is used to check feasibility and presolve.

Extended Formulation:

$$w_{1} \leq 4$$

$$w_{2} + 2w_{3} + w_{4} = w_{1}$$

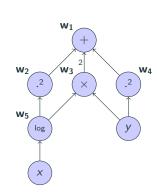
$$w_{5}^{2} = w_{2}$$

$$w_{5}y = w_{3}$$

$$y^{2} = w_{4}$$

$$\log(x) = w_{5}$$

Used to construct LP relaxation.



Nonlinearity Handlers

But $\log(x)^2 + 2\log(x)y + y^2 \le 4$ is convex and quadratic in $(\log(x), y)$.

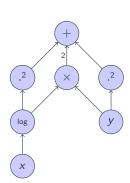
Nonlinearity Handlers

But
$$\log(x)^2 + 2\log(x)y + y^2 \le 4$$
 is convex and quadratic in $(\log(x), y)$.

To explore structure, we now have Nonlinearity Handler:

- Adds additional separation and/or propagation algorithms for structures that can be identified in the expression graph.
- Attached to nodes in expression graph, but does <u>not</u> define expressions nor constraints.
- Examples: quadratics, convex and concave, second order cone, ...
- Several nlhdlrs can be attached to a node in the expression graph.

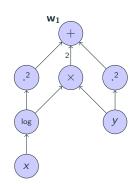
Constraint: $\log(x)^2 + 2\log(x)y + y^2 \le 4$



Constraint: $\log(x)^2 + 2\log(x)y + y^2 \le 4$

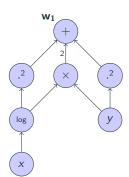
 $w_1 \leq 4$

1. Annotate root with auxiliary variable w_1 .



Constraint: $\log(x)^2 + 2\log(x)y + y^2 \le 4$

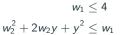
- 1. Annotate root with auxiliary variable w_1 .
- 2. Run detect of all nlhdlrs on + node.

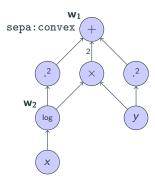


 $w_1 \le 4$

Constraint:
$$\log(x)^2 + 2\log(x)y + y^2 \le 4$$

- 1. Annotate root with auxiliary variable w_1 .
- 2. Run detect of all nlhdlrs on + node.
 - nlhdlr_convex
 - detects a convex quadratic structure,
 - signals that it can compute underestimators,
 - but requests an auxiliary variable w2 for log node.



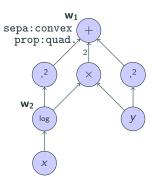


Constraint:
$$\log(x)^2 + 2\log(x)y + y^2 \le 4$$

- 1. Annotate root with auxiliary variable w_1 .
- 2. Run detect of all nlhdlrs on + node.
 - nlhdlr_convex
 - detects a convex quadratic structure,
 - signals that it can compute underestimators,
 - but requests an auxiliary variable w₂ for log node.
 - nlhdlr_quadratic
 - also detects a quadratic structure,
 - signals that it can do domain propagation, and
 - notifies that it will use bounds of nodes log and y.

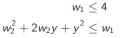
$$w_1 \le 4$$

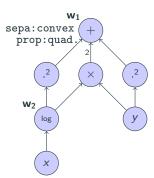
$$w_2^2 + 2w_2y + y^2 \le w_1$$



Constraint:
$$\log(x)^2 + 2\log(x)y + y^2 \le 4$$

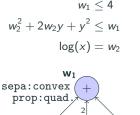
- 1. Annotate root with auxiliary variable w_1 .
- 2. Run detect of all nlhdlrs on + node.
 - nlhdlr_convex
 - detects a convex quadratic structure,
 - signals that it can compute underestimators,
 - but requests an auxiliary variable w₂ for log node.
 - nlhdlr_quadratic
 - also detects a quadratic structure,
 - signals that it can do domain propagation, and
 - notifies that it will use bounds of nodes log and y.
- 3. Run detect of all nlhdlrs on log node.





Constraint: $\log(x)^2 + 2\log(x)y + y^2 \le 4$

- 1. Annotate root with auxiliary variable w_1 .
- 2. Run detect of all nlhdlrs on + node.
 - nlhdlr_convex
 - detects a convex quadratic structure,
 - signals that it can compute underestimators,
 - but requests an auxiliary variable w₂ for log node.
 - nlhdlr_quadratic
 - also detects a quadratic structure,
 - signals that it can do domain propagation, and
 - notifies that it will use bounds of nodes log and y.
- 3. Run detect of all nlhdlrs on log node.
 - No specialized nlhdlr signals success.
 The expression handler will be used for both under/overestimation and propagation.



X

expr_log

W₂

log

MINLP features in SCIP (teasers only)

SCIP features particular for nonlinear structures

+ = new or improved in SCIP 8

Presolve

- simplify expressions
- + identify common subexpressions

- simplify expressions
- + identify common subexpressions
- + linearize products of binary variables

- simplify expressions
- + identify common subexpressions
- + linearize products of binary variables
- try to restrict variables appearing in one constraint only to its bounds,

e.g.,
$$xy + yz \le u \rightarrow y \in \{\ell_y, u_y\}$$

[Hansen et.al., 1993]

- simplify expressions
- + identify common subexpressions
- + linearize products of binary variables
- try to restrict variables appearing in one constraint only to its bounds, e.g., $xy + yz \le u \to y \in \{\ell_y, u_y\}$ [Hansen et.al., 1993]
- if QP, add KKT as redundant constraints

- simplify expressions
- + identify common subexpressions
- + linearize products of binary variables
- try to restrict variables appearing in one constraint only to its bounds, e.g., $xy + yz \le u \to y \in \{\ell_y, u_y\}$ [Hansen et.al., 1993]
- if QP, add KKT as redundant constraints
- + symmetry detection using expression graph [Liberti 2010, Wegscheider 2019]

Quadratics

Nonlinear handler for quadratic subexpressions:

- provides domain propagation (variable bound tightening)
- + intersection cuts for nonconvex quadratics [Chmiela, Muñoz, Serrano 2021]

+ also as separator for implied quadratics $\det(2 \times 2 \text{ minors of } X) = 0$, $X = xx^T$

Quadratics

Nonlinear handler for quadratic subexpressions:

- provides domain propagation (variable bound tightening)
- + intersection cuts for nonconvex quadratics

[Chmiela, Muñoz, Serrano 2021]



+ also as separator for implied quadratics $det(2 \times 2 \text{ minors of } X) = 0$, $X = xx^T$

Separator for implied PSD constraint $(X \succeq xx^T)$:

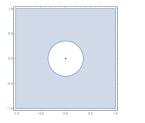
+ SDP-cuts for 2 \times 2 principal minors of $X - xx^{T} \succeq 0$

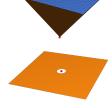
Quadratics

Nonlinear handler for quadratic subexpressions:

- provides domain propagation (variable bound tightening)
- + intersection cuts for nonconvex quadratics

[Chmiela, Muñoz, Serrano 2021]





+ also as separator for implied quadratics $det(2 \times 2 \text{ minors of } X) = 0$, $X = xx^T$

Separator for implied PSD constraint $(X \succeq xx^T)$:

+ SDP-cuts for 2 \times 2 principal minors of $X - xx^{\mathsf{T}} \succeq 0$

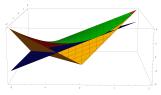
Separator for edge-concave quadratics:

- aggregate quadratic constraints to be edge-concave
- separate facets from vertex-polyhedral convex hull

Bilinear

Nonlinear handler for bilinear expressions:

• convexify and domain propagation for xy w.r.t. additional inequalities on x, y, e.g., $x \le y$



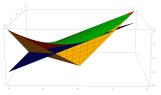
ullet inequalities found by 2D-projection of LP relaxation (pprox OBBT)

[Linderoth 2004, Hijazi 2015, Locatelli 2016, Müller, Serrano, Gleixner 2020]

Bilinear

Nonlinear handler for bilinear expressions:

• convexify and domain propagation for xy w.r.t. additional inequalities on x, y, e.g., $x \le y$



ullet inequalities found by 2D-projection of LP relaxation (pprox OBBT)

[Linderoth 2004, Hijazi 2015, Locatelli 2016, Müller, Serrano, Gleixner 2020]

Reformulation Linearization Technique for bilinear products:

- + cuts from multiplication of LP rows and bounds
- + also for implicit products in mixed-binary linear problems

[Adams, Sherali 1986, Achterberg, Bestuzheva, Gleixner 2022+]

Second-Order Cones

Nonlinear handler for Second-Order Cones:

+ detect SOC constraints from quadratics and some Euclidean norms

Second-Order Cones

Nonlinear handler for Second-Order Cones:

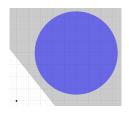
- + detect SOC constraints from quadratics and some Euclidean norms
- separate using disaggregated formulation [Vielma, et.al. 2016]

Convexity and Concavity

Nonlinear handler for convex and concave expressions:

- + find convex/concave subexpressions using composition rules
- gradient cuts on convex functions
- facets of convex hull on concave function
- + prefer extended formulations for convex case

[Tawarmalani Sahinidis, 2005]



Convexity and Concavity

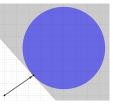
Nonlinear handler for convex and concave expressions:

- + find convex/concave subexpressions using composition rules
- gradient cuts on convex functions
- facets of convex hull on concave function
- + prefer extended formulations for convex case

[Tawarmalani Sahinidis, 2005]

Separator for supporting hyperplanes:

- separators to linearize at boundary of convex NLP relaxation
- projection of given point, or linesearch to interior point



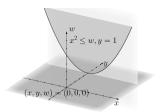
[Veinott 1967, Kronqvist, Lundell, Westerlund 2016, Serrano, Schwarz, Gleixner 2020]

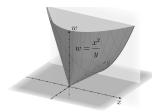
Perspective Strengthening

Nonlinear handler for perspective strengthening:

- + detect expressions in semi-continuous variables ($\ell_x y \le x \le u_x y$, $y \in \{0,1\}$)
- + strengthen under/overestimators for such expressions, e.g.,

$$f(\hat{x}) + \nabla f(\hat{x})(x - \hat{x}) \le w \quad \Rightarrow \quad f(\hat{x})y + \nabla f(\hat{x})(x - \hat{x}y) \le w$$





[Frangioni, Gentile 2006, Bestuzheva, Gleixner, Vigerske 2021]

Quotients

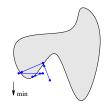
Nonlinear handler for quotients:

- to avoid ambiguity, there is no expression type for quotients
- + detect $\frac{ax+b}{cy+d}$ in nonlinear handler
- + provide bound tightening
- + provide linear under/overestimates

[Zamora, Grossmann 1998]

Primal Heuristics

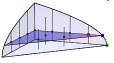
• fix all integer vars, solve NLP to local optimality



- multistart with constraint consensus for NLPs
- [Smith, Chinneck, Aitken 2013]

- NLP-diving
- solve sequence of regularized NLP reformulations of MINLP ("MPEC")
- fix nonlinear vars, solve remaining sub-MIP

[Berthold, Gleixner 2014]



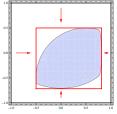
• other large neighborhood search heuristics, solving sub-MINLPs

[Berthold, Heinz, Pfetsch, Vigerske 2011]

NLP solving via Ipopt and CppAD

Domain Propagation (Variable Bound Tightening)

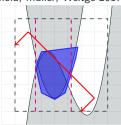
• Feasibility-Based Bound Tightening (FBBT): as in constraint programming



Optimization-Based Bound Tightening (OBBT): optimize var. over LP

 Optimi

[Gleixner, Berthold, Müller, Weltge 2017]



OBBT over NLP relaxation

Interfaces

Readers for MINLP included:

• MPS, LP, PIP, AMPL NL, OSiL, ZIMPL

Interfaces:

- C, Java
- Python
- Julia, Matlab
- AMPL, GAMS
- ..

Benchmark

Benchmark Setting

Test set:

- 183 "solvable" instances from MINLPLib
- varying degree of integrality
- varying degree of nonlinearity
- avoid too many instances with similar name
- all solvers can handle (no sine, cosine, signpower)

Benchmark Setting

Test set:

- 183 "solvable" instances from MINLPLib
- varying degree of integrality
- varying degree of nonlinearity
- avoid too many instances with similar name
- all solvers can handle (no sine, cosine, signpower)

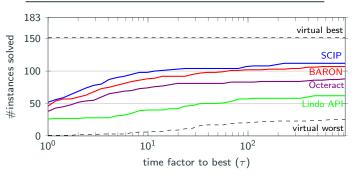
Settings:

- relative gap tolerance 10^{-4}
- feasibility tolerance 10^{-6}
- bound unbounded variables by 10¹²
- 2 hours time limit
- 1 thread
- 50 GB RAM

GAMS: all included global (still updated) MINLP solvers

Comparison

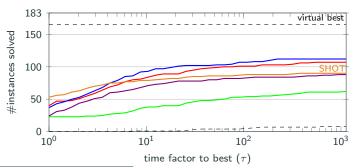
	solved	timeout	mean time*
BARON 22.9.1	107	72	616s
Lindo API 13.0.340	62	80	1116s
Octeract 4.4.1	88	85	849s
SCIP 8.0 (f0a1490e3b)	112	66	497s
virtual best	152	_	109s



*w.r.t. 135 instances on which no solver returned wrong results

Comparison incl. SHOT with Gurobi

	solved	timeout	mean time [†]
BARON 22.9.1	107	72	627s
Lindo API 13.0.340	62	80	1155s
Octeract 4.4.1	88	85	824s
SCIP 8.0 (f0a1490e3b)	112	66	470s
SHOT 1.1 (033622c6) with Gurobi 9.5.2	90	18	(59s)
virtual best	165	_	(29s)



 $[\]ensuremath{^{\dagger}} w.r.t.$ 129 instances on which no solver returned wrong results

End!

For details, see also the release report of SCIP 8 (and previous, and reference therein):

K. Bestuzheva, M. Besançon, W. Chen, A. Chmiela, T. Donkiewicz, J. Doornmalen,

L. Eifler, O. Gaul, G. Gamrath, A. Gleixner, L. Gottwald, C. Graczyk, K. Halbig,

A. Hoen, C. Hojny, R. Hulst, T. Koch, M. Lübbecke, S. Maher, F. Matter, E. Mühmer,

B. Müller, M. Pfetsch, D. Rehfeldt, S. Schlein, F. Schlösser, F. Serrano, Y. Shinano,

B. Sofranac, M. Turner, S. Vigerske, F. Wegscheider, P. Wellner, D. Weninger, J. Witzig,

The SCIP Optimization Suite 8.0, ZIB Report 21-41, 2021

PS: Testset

arki0005 arki0019 arki0020 autocorr bern25-13 autocorr bern30-04 autocorr bern35-04 ball mk4 15 batchs201210m bayes2_20 bayes2_30 bayes2_50 blend146 blend480 blend852 camshape100 camshape200 cardqp_inlp cardqp_iqp carton9 casctanks cecil_13 celar6-sub0 cesam2log chimera_k64maxcut-01 chimera_k64maxcut-02 chimera_lga-01 chp_shorttermplan1a chp_shorttermplan2a chp_shorttermplan2b clay0305hfsg color_lab3_3x0 crossdock_15x7 crossdock_15x8 crudeoil_pooling_ct3 crudeoil_pooling_dt2 crudeoil_pooling_dt4 cvxnonsep_psig20 cvxnonsep_psig30 edgecross10-050 edgecross10-070 edgecross14-039 eg_all_s eigena2 elec25 ex1223b ex1233 ex1252 ex4 ex5_3_3 ex5_4_4 ex6_1_3 ex6_2_10 ex6_2_6 ex7_2_3 ex8_5_2 ex8_5_6 faclay20h flay05h flay05m flay06m fo7_2 fo7_ar2_1 fo7_ar3_1 gabriel01 gabriel02 gabriel04 gastrans135 gastrans582_cold13 gastrans582_cold17_95 graphpart_3pm-0444-0444 graphpart_clique-30 graphpart_clique-40 gsg_0001 hadamard_5 heatexch_spec2 ibs2 ising2_5-300_5555 kall_circles_c8a kall_congruentcircles_c61 kall_diffcircles_9 kissing2 kport20 kriging_peaks-red020 kriging_peaks-red030 kriging_peaks-red050 lop97ic maxcsp-geo50-20-d4-75-36 maxcsp-langford-3-11 meanvar-orl400_05_e_7 methanol100 methanol200 milinfract multiplants_mtg2 multiplants_mtg5 multiplants_stg6 nd_netgen-2000-2-5-a-a-ns_7 nd_netgen-3000-1-1-b-b-ns_7 netmod_dol1 netmod_dol2 nous1 nvs04 nvs05 nvs06 orth_d3m6 parabol5_2_3 parallel p_ball_10b_5p_2d_h p_ball_20b_5p_3d_m p_ball_30b_5p_2d_m pedigree_ex1058 pedigree_ex485 pedigree_sp_top4_350tr pinene100 pinene200 pinene50 pointpack08 pointpack10 pooling_digabel16 pooling_epa1 pooling_epa2 popdynm100 popdynm25 popdynm50 portfol_robust100_09 portfol_robust200_03 portfol_shortfall100_04 powerflow0009r powerflow0030r qspp_0_10_0_1_10_1 qspp_0_13_0_1_10_1 qspp_0_14_0_1_10_1 radar-2000-10-a-6_lat_7 radar-3000-10-a-8_lat_7 rocket100 rocket200 rocket50 rsvn0820m03m rsvn0820m04m rsvn0840m04m sepasegu_convent sfacloc2_2_80 sfacloc2_3_90 sfacloc2_4_90 siup2 sonet19v5 sonet20v6 sonet24v2 sonetgr17 sporttournament22 sporttournament26 sporttournament28 squfl020-150 squfl030-150 squfl030-150persp sssd15-06persp sssd15-08 sssd15-08persp st_e32 st_e36 steenbrf supplychainp1_022020 supplychainr1_022020 syn40m04hfsg synheat telecomsp_pacbell tln7 tls4 toroidal3g7_6666 tspn10 tspn12 unitcommit_200_100_1_mod_8 unitcommit_200_100_2_mod_8 unitcommit_50_20_2_mod_8 wastepaper3 wastepaper4 wastewater05m2 wastewater13m2 wastewater14m1 waterno2_03 waterno2_04 waterund11 waterund14 waterund22