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Introduction



What is SCIP?

SCIP (Solving Constraint Integer Programs) . . .

• provides a full-scale MIP and MINLP solver,

• incorporates

• MIP features (cutting planes, LP relaxation), and

• MINLP features (spatial branch-and-bound, NLP relaxation)

• CP features (domain propagation),

• SAT-solving features (conflict analysis, restarts),

• is a branch-cut-and-price framework,

• has a modular structure via plugins,

• is open-source (since November 2022),

• and is available under https://www.scipopt.org.

https://www.scipopt.org


Mixed-Integer Nonlinear Programming

min cTx

s.t. gk(x) ≤ 0 ∀k ∈ [m]

xi ∈ Z ∀i ∈ I ⊆ [n]

xi ∈ [ℓi , ui ] ∀i ∈ [n]

The functions gk : [ℓ, u] → R can be
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and are given in algebraic form.



Expression Trees

The algebraic structure of nonlinear constraints

is stored in a directed acyclic graph:

• nodes: variables, operations

• arcs: flow of computation

log(x)2 + 2 log(x)y + y2 ∈ [−∞, 4]

x , y ∈ [1, 4]
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Spatial Branch and Bound

SCIP solves MINLPs by spatial Branch & Bound.

LP relaxation via convexification and linearization:

convex functions concave functions xk (k ∈ 2Z+ 1) x · y

Branching on variables in violated nonconvex constraints:

-1.0 -0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

-1.0 -0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

. . . and bound tightening (FBBT, OBBT), primal heuristics (e.g.,

sub-NLP/MIP/MINLP), other special techniques
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SCIP 7 (and before)



Reformulation in Presolve

Goal: Reformulate constraints such that only elementary cases (convex, concave, odd

power, quadratic) remain by introducing new variables and new constraints.

Consider

min z

s.t. exp(ln(1000) + 1 + x y) ≤ z

x2 + y 2 ≤ 2

Reformulation takes apart exp(ln(1000) + 1 + x y), thus SCIP actually solves the

extended formulation

min z

s.t. exp(w) ≤ z

ln(1000) + 1 + x y = w

x2 + y 2 ≤ 2
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Issue with explicit reformulation

SCIP solves reformulated problem fine:

SCIP Status : problem is solved [optimal solution found]

Solving Time (sec) : 0.08

Solving Nodes : 5

Primal Bound : +9.99999656552062e+02 (3 solutions)

Dual Bound : +9.99999656552062e+02

Gap : 0.00 %

Solution (x , y , z,w) = (−1.000574549, 0.999425451, 999.999656552, 6.907754936) looks ok:

min z Violation

s.t. exp(w) ≤ z 0.4659 · 10−6 ≤ feastol ✓

ln(1000) + 1 + x y = w 0.6731 · 10−6 ≤ feastol ✓

x2 + y 2 ≤ 2 0.6602 · 10−6 ≤ feastol ✓

However, original exp(ln(1000) + 1 + x y) ≤ z has too large violation:

[nonlinear] <e1>: exp((7.9077552789821368151 +1 (<x> * <y>)))-1<z>[C] <= 0;

violation: right hand side is violated by 0.000673453314561812

best solution is not feasible in original problem
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Problem with classic approach

⇒ Explicit reformulation of constraints ...

• ... loses the connection to the original problem.

• ... loses distinction between original and auxiliary variables.

Thus, we may branch on auxiliary variables.

• ... prevents simultaneous exploitation of overlapping structures.



SCIP 8: updated framework



Main Ideas

Avoid explicit split-up of constraints.

• introduce extended formulation as annotation to the original formulation

• use extended formulation for relaxation

• use original formulation for feasibility checking

• to resolve infeasibility in original constraints, tighten relaxation of extended

formulation

Everything nonlinear is an expression.

• represent all nonlinear constraints in one expression graph (DAG)

• all algorithms (check, separation, propagation, etc.) work on the same expression

graph, no more specialized nonlinear constraints

• separate expression operators (+, ×) and high-level structures (quadratic,

semi-continuous, second order cone, etc.)
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Expression Handlers

Each operator type (+, ×, pow, etc.) is implemented by an expression handler, which

can provide a number of callbacks:

• evaluate and differentiate expression w.r.t. operands

• interval evaluation and tighten bounds on operands

• provide linear under- and over-estimators

• inform about curvature, monotonicity, integrality

• simplify, compare, print, parse, hash, copy, etc.

Expression handlers are like other SCIP plugins.

New ones can be added by users (YOU!).

Available handler: abs, cos, entropy, exp, log, pow, product, signpow, sin, sum, value,

var



Example: Extended Formulation (exprhdlr only)

Constraint:

log(x)2 + 2 log(x)y + y 2 ≤ 4

This formulation is used to check feasibility and presolve.

Extended Formulation: Used to construct LP

relaxation.
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Constraint:

log(x)2 + 2 log(x)y + y 2 ≤ 4

This formulation is used to check feasibility and presolve.

Extended Formulation:

w1 ≤ 4

w2 + 2w3 + w4 = w1

w 2
5 = w2

w5y = w3

y 2 = w4

log(x) = w5

Used to construct LP relaxation.
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Nonlinearity Handlers

But log(x)2 + 2 log(x)y + y 2 ≤ 4 is convex and quadratic in (log(x), y).

To explore structure, we now have Nonlinearity Handler:

• Adds additional separation and/or propagation algorithms for structures that

can be identified in the expression graph.

• Attached to nodes in expression graph, but does not define expressions nor

constraints.

• Examples: quadratics, convex and concave, second order cone, . . .

• Several nlhdlrs can be attached to a node in the expression graph.
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Example: Extended Formulation (with nlhdlrs)

Constraint: log(x)2 + 2 log(x)y + y 2 ≤ 4

1. Annotate root with auxiliary variable w1.

2. Run detect of all nlhdlrs on + node.

• nlhdlr convex

• detects a convex quadratic structure,

• signals that it can compute underestimators,

• but requests an auxiliary variable w2 for log node.

• nlhdlr quadratic

• also detects a quadratic structure,

• signals that it can do domain propagation, and

• notifies that it will use bounds of nodes log and y .

3. Run detect of all nlhdlrs on log node.

• No specialized nlhdlr signals success.

The expression handler will be used for both

under/overestimation and propagation.

w1 ≤ 4

w 2
2 + 2w2y + y 2 ≤ w1

log(x) = w2
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sepa:convex

w2

prop:quad.

expr log
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MINLP features in SCIP (teasers only)

SCIP features particular for nonlinear structures

+ = new or improved in SCIP 8



Presolve

• simplify expressions

+ identify common subexpressions

+ linearize products of binary variables

• try to restrict variables appearing in one constraint only to its bounds,

e.g., xy + yz ≤ u → y ∈ {ℓy , uy} [Hansen et.al., 1993]

• if QP, add KKT as redundant constraints

+ symmetry detection using expression graph [Liberti 2010, Wegscheider 2019]
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Quadratics

Nonlinear handler for quadratic subexpressions:

• provides domain propagation (variable bound tightening)

+ intersection cuts for nonconvex quadratics [Chmiela, Muñoz, Serrano 2021]
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+ also as separator for implied quadratics det(2× 2 minors of X ) = 0, X = xxT

Separator for implied PSD constraint (X ⪰ xxT):

+ SDP-cuts for 2× 2 principal minors of X − xxT ⪰ 0

Separator for edge-concave quadratics:

• aggregate quadratic constraints to be edge-concave

• separate facets from vertex-polyhedral convex hull [Misener, Floudas 2012]
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Bilinear

Nonlinear handler for bilinear expressions:

• convexify and domain propagation for xy w.r.t. additional inequalities on x , y ,

e.g., x ≤ y

• inequalities found by 2D-projection of LP relaxation (≈ OBBT)

[Linderoth 2004, Hijazi 2015, Locatelli 2016, Müller, Serrano, Gleixner 2020]

Reformulation Linearization Technique for bilinear products:

+ cuts from multiplication of LP rows and bounds

+ also for implicit products in mixed-binary linear problems

[Adams, Sherali 1986, Achterberg, Bestuzheva, Gleixner 2022]



Bilinear

Nonlinear handler for bilinear expressions:

• convexify and domain propagation for xy w.r.t. additional inequalities on x , y ,

e.g., x ≤ y

• inequalities found by 2D-projection of LP relaxation (≈ OBBT)

[Linderoth 2004, Hijazi 2015, Locatelli 2016, Müller, Serrano, Gleixner 2020]

Reformulation Linearization Technique for bilinear products:

+ cuts from multiplication of LP rows and bounds

+ also for implicit products in mixed-binary linear problems

[Adams, Sherali 1986, Achterberg, Bestuzheva, Gleixner 2022]



Second-Order Cones

Nonlinear handler for Second-Order Cones:

+ detect SOC constraints from quadratics and some

Euclidean norms

• separate using disaggregated formulation

[Vielma, et.al. 2016]

⇓
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Convexity and Concavity

Nonlinear handler for convex and concave expressions:

+ find convex/concave subexpressions using composition

rules

• gradient cuts on convex functions

• facets of convex hull on concave function

+ prefer extended formulations for convex case

[Tawarmalani Sahinidis, 2005]

Separator for supporting hyperplanes:

• separators to linearize at boundary of convex NLP

relaxation

• projection of given point, or linesearch to interior point

[Veinott 1967, Kronqvist, Lundell, Westerlund 2016, Serrano, Schwarz, Gleixner 2020]
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Perspective Strengthening

Nonlinear handler for perspective strengthening:

+ detect expressions in semi-continuous variables (ℓxy ≤ x ≤ uxy , y ∈ {0, 1})

+ strengthen under/overestimators for such expressions, e.g.,

f (x̂) +∇f (x̂)(x − x̂) ≤ w ⇒ f (x̂)y +∇f (x̂)(x − x̂y) ≤ w

[Frangioni, Gentile 2006, Bestuzheva, Gleixner, Vigerske 2021]



Quotients

Nonlinear handler for quotients:

• to avoid ambiguity, there is no expression type for quotients

+ detect ax+b
cy+d

in nonlinear handler

+ provide bound tightening

+ provide linear under/overestimates [Zamora, Grossmann 1998]



Primal Heuristics

• fix all integer vars, solve NLP to local optimality

min

• multistart with constraint consensus for NLPs [Smith, Chinneck, Aitken 2013]

• NLP-diving

• solve sequence of regularized NLP reformulations of MINLP (“MPEC”)

• fix nonlinear vars, solve remaining sub-MIP [Berthold, Gleixner 2014]

• other large neighborhood search heuristics, solving sub-MINLPs

[Berthold, Heinz, Pfetsch, Vigerske 2011]

NLP solving via Ipopt and CppAD



Domain Propagation (Variable Bound Tightening)

• Feasibility-Based Bound Tightening (FBBT): as in constraint programming
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• Optimization-Based Bound Tightening (OBBT): optimize variable over LP

[Gleixner, Berthold, Müller, Weltge 2017]

• OBBT over NLP relaxation



Interfaces

Readers for MINLP included:

• MPS, LP, PIP, AMPL NL, OSiL, ZIMPL

Interfaces:

• C, Java

• Python

• Julia, Matlab

• AMPL, GAMS

• ...



Benchmark



Solvers

Global MINLP solvers included in GAMS 41.2.0 (November 2022) and still maintained:

• BARON 22.9.30: commercial solver by The Optimization Firm (Nick Sahinidis)

chooses between several LP/MIP/NLP subsolvers (CONOPT, CPLEX, . . . )

• Lindo API 14.0.5099.162: commercial solver by Lindo Systems, Inc.

uses CONOPT and MOSEK as subsolvers

• Octeract 4.5.1: commercial solver by Octeract, Ltd.

uses CPLEX as LP/MIP/QP/QCP solver, Ipopt as NLP solver

• SCIP 8.0.2: open-source academic solver

uses CPLEX as LP solver, Ipopt (with MA27) as NLP solver



Benchmark Setting

Test set:

• selected 200 instances from MINLPLib:

• all solvers can handle (no sine, cosine, signpower)

• solvable by at least one solver, but not trivial for all

• varying degree of integrality

• varying degree of nonlinearity

• avoid too many instances with similar name

• 4 additional permutations of variables/equations ⇒ 1000 instances

Settings:

• relative gap tolerance 10−4, absolute gap tolerance 10−6

• feasibility tolerance 10−6

• bound unbounded variables by 1012

• 2 hours time limit

• 1 thread/process

• 50 GB RAM
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Why “bound unbounded variables by 1012” ???

• convex underestimators typically

require variable bounds

• without bounds, the relaxation may be

weak or even unbounded

Solvers handle unbounded variables in different ways by default:

• SCIP skips relaxations and hopes that branching will help ⇒ may not terminate

• BARON sets missing bounds of vars in nonconvex terms to ≈ ±1010;

does not claim global optimality anymore

• Lindo API reduces bounds of all vars in nonconvex terms to ±1010;

may still claim optimality

• Octeract sets missing bounds of all variables to ±107 (!);

may still claim optimality

⇒ Default settings may mean that each solver solves a different subproblem of

the actual problem and may report a lower bound of the subproblem only.

Via parameters, we can enforce a more similar treatment of unbounded variables.
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Results (Serial Mode)

solved timeout fail mean time∗

BARON 790 183 27 75s

Lindo API 538 323 139 489s

Octeract 671 279 50 184s

SCIP 776 183 41 85s

virt. worst 368 405 227 1505s

virt. best 967 33 0 20s
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Feedback

(Some of) the competition agrees with this benchmark... :-)

https://twitter.com/TheOptFirm/status/1616127754033938463

https://twitter.com/TheOptFirm/status/1616127754033938463


Parallel Mode

Limiting solvers to one CPU core is so 20th century....

Can these solvers utilize several cores? (assuming shared memory)

• BARON can utilize parallelization in the MIP solver, when solving MIP relaxations

• Lindo API log says it uses parallellization (parallel tree search?)

• Octeract has been designed for parallel tree search from the beginning

• SCIP itself uses almost no parallelization when solving MINLPs,

but FiberSCIP is available (racing ramp-up, parallel tree search)

Considering only the selected 200 instances without permutations:

1 thread 4 threads 8 threads 16 threads

solved time solved time solved time solved time

BARON 161 64s 160 58s 160 57s 158 59s

Lindo API 114 424s 114 379s 106 460s 107 456s

Octeract 134 179s 133 147s 138 118s 135 123s

(Fiber)SCIP 161 77s 145 94s 147 78s 152 75s

The test set may include too many easy instances where parallelization cannot shine.
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End!

For more details, see also

• the report Global Optimization of Mixed-Integer Nonlinear Programs with SCIP 8

(K. Bestuzheva, A. Chmiela, B. Müller, F. Serrano, S. Vigerske, and F. Wegscheider),

https://arxiv.org/abs/2301.00587, and

• the release report of SCIP 8, https://arxiv.org/abs/2112.08872

https://arxiv.org/abs/2301.00587
https://arxiv.org/abs/2112.08872
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