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Introduction



Mixed-Integer Nonlinear Programs (MINLPs)

We consider
min cTx

s.t. gk(x) ≤ 0 ∀k ∈ [m]

xi ∈ Z ∀i ∈ I ⊆ [n]

xi ∈ [ℓi , ui ] ∀i ∈ [n]

The functions gk ∈ C 1([ℓ, u],R) can be
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Examples of Mixed-Integer Nonlinearities

• Water treatment unit - variable fraction p ∈ [0, 1] of variable quantity q: qp, and
valve on/off state z ∈ {0, 1}

• AC power flow - nonlinear function of voltage magnitudes and angles and binary
decisions on switching status of power lines

pij = gijv
2
i − gijvivj cos(θij) + bijvivj sin(θij)

• Circle packing - non-overlap constraints

∥x − y∥2 ≥ rx + ry

• etc.



Solving a Mixed-Integer Nonlinear Optimization Problem

Two major tasks:

1. Finding and improving feasible solutions (primal side)
• Ensure feasibility, sacrifice optimality
• Important for practical applications

2. Proving optimality (dual side)
• Ensure optimality, sacrifice feasibility
• Necessary in order to actually solve the problem

Connected by:

3. Strategy
• Ensure convergence
• Divide: branching, decompositions, ...
• Put together all components



Adding Nonlinearity to a MIP Brings New Challenges

• More numerical issues
• NLP solvers are less efficient and reliable than LP solvers

1. Finding feasible solutions
• Feasible solutions must also satisfy nonlinear constraints
• If nonconvex: fixing integer variables and solving the NLP can produce local optima

2. Proving optimality
• NLP or LP relaxations?
• If nonconvex: continuous relaxation no longer provides a lower bound
• "Convenient" descriptions of the feasible set are important

3. Strategy
• Need to account for all of the above
• Warmstart for NLP is much less efficient than for LP

→



Solving MINLPs

Convex MINLP:

• Main difficulty: Integrality restrictions on variables

• Main challenge: Integrating techniques for MIP (branch-and-bound) and NLP
(SQP, interior point, Kelley’s cutting plane, . . . )

General MINLP = Convex MINLP plus Global Optimization:

• Main difficulty: Nonconvex nonlinearities
• Main challenges:

• Convexification of nonconvex nonlinearities
• Reduction of convexification gap (spatial branch-and-bound)
• Numerical robustness
• Diversity of problem class: MINLP is “The mother of all determinstic optimization

problems” (Jon Lee, 2008)
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Fundamental Methods

Mixed-Integer Linear Programming



MIP Branch & Cut

For mixed-integer linear programs (MIP), that is,

min cTx ,

s.t. Ax ≤ b,

xi ∈ Z, i ∈ I,

the dominant method of Branch & Cut combines

1 2 3 4

1

2

3

cutting planes
[Gomory, 1958]

&

branch-and-bound
[Land and Doig, 1960]
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Convex MINLP



Relaxations

Key task: describe the feasible set in a convenient way.

Requirement: the relaxed problem should be efficiently solvable to global optimality.

It is preferable to have relaxations that are:

• Convex: NLP solutions are globally optimal, infeasibility detection is reliable

• Linear: solving is more efficient, good for warmstarting

and to avoid:

• Very large numbers of constraints and variables

• Bad numerics



Relaxations for Convex MINLPs

• Relax integrality → NLP relaxation

→

• Replace nonlinear set with linear outer approximation → MIP relaxation

• Linear outer approximation + relax integrality → LP relaxation



NLP-based Branch & Bound (NLP-BB)

MIP branch-and-bound
[Land and Doig, 1960]

⇒

MINLP branch-and-bound
[Leyffer, 1993]

Bounding: Solve convex NLP relaxation obtained by dropping integrality requirements.

Branching: Subdivide problem along variables xi , i ∈ I, that take fractional value in
NLP solution.

• However: Robustness and Warmstarting-capability of NLP solvers not as good as
for LP solvers (simplex alg.)

⇒ Mahajan, Leyffer, and Kirches [2012]: approximate NLP solves by QPs (hot-start
possible)
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Reduce Convex MINLP to MIP

Assume all functions gk(·) of MINLP are convex on [ℓ, u].

Duran and Grossmann [1986]: MINLP and the
following MIP have the same optimal solutions

min cTx ,

s.t. gk(x̂) +∇gk(x̂)
T(x − x̂) ≤ 0,

k ∈ [m], x̂ ∈ R,

xi ∈ Z, i ∈ I,

x ∈ [ℓ, u],

where x̂ ∈ R are the solutions of the NLP
subproblems obtained from MINLP by applying any
possible fixing for xI , i.e.,

min cTx s.t. g(x) ≤ 0, x ∈ [ℓ, u], xI fixed.

Example:

min x + y

s.t. (x , y) ∈ ellipsoid

x ∈ {0, 1, 2, 3}
y ∈ [0, 3]
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Outer Approximation Method (OA), ECP, EHP

Convex MINLP

min cTx

s.t. gk(x) ≤ 0 ∀k ∈ [m]

xi ∈ Z ∀i ∈ I ⊆ [n]

xi ∈ [ℓi , ui ] ∀i ∈ [n]

≡
MIP

min cTx ,

s.t. gk(x̂) +∇gk(x̂)
T(x − x̂) ≤ 0,

∀k ∈ [m], x̂ ∈ R,

xi ∈ Z, ∀i ∈ I,

xi ∈ [ℓi , ui ], ∀i ∈ [n]

Outer Approximation(OA) algorithm
[Duran and Grossmann, 1986]:

• Start with R := ∅.

• Dynamically increase R by alternatively solving
MIP relaxations and NLP subproblems until
MIP solution is feasible for MINLP.

MIP

NLP

MIP

NLP
MIP
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Extended Cutting Plane Method (ECP)
[Kelley, 1960, Westerlund and Petterson, 1995]:

• Iteratively solve MIP relaxation only.

• Linearize gk(·) in MIP relaxation.

• No need to solve NLP, but weaker MIP
relaxation.
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Extended Hyperplane Method (EHP)
[Veinott, 1967, Kronqvist, Lundell, and Westerlund, 2016,

Lundell, Kronqvist, and Westerlund, 2022, Serrano, Schwarz,

and Gleixner, 2020]:

• Iteratively solve MIP relaxation only.

• Move MIP solution onto NLP-feasible set
{x ∈ [ℓ, u] : gk(x) ≤ 0} via linesearch.

• Linearize gk(·) in improved reference point.

• No need to solve NLP, but stronger MIP than
ECP.

MIP

Interior P.

MIP

MIP
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LP/NLP- or LP-based Branch & Bound

OA/ECP/EHP: Solving a sequence of MIP relaxations can be expensive and wasteful
(no warmstarts)

LP/NLP-based Branch & Bound [Quesada and Grossmann, 1992]:

• Integrate NLP-solves into MIP Branch & Bound.

• When LP relaxation is integer feasible, solve NLP subproblem (as in OA).

• Add linearization in NLP solution to LP relaxation and resolve LP.

LP-based Branch & Bound:

• Integrate Kelley’ Cutting Plane method into MIP Branch & Bound.

• Add linearization in LP solution to LP relaxation (as in ECP).

• Optional: Move LP solution onto NLP-feasible set {x ∈ [ℓ, u] : gk(x) ≤ 0} via
linesearch (as in EHP) [Lundell, Kronqvist, and Westerlund, 2022].
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Fundamental Methods

Nonconvex MINLP



Nonconvex MINLP

Now: Let gk(·) be nonconvex for some k ∈ [m].

Outer-Approximation:

• Linearizations
gk(x̂) +∇gk(x̂)(x − x̂) ≤ 0
may not be valid.

• Heuristics: add cuts as “soft-constraints”
minα≥0 α s.t. gk(x̂) +∇gk(x̂)(x − x̂) ≤ α

NLP-based Branch & Bound:

• Solving nonconvex NLP relaxation to global
optimality can be as hard as original problem.

• Heuristic: Solve NLPs locally from multiple
starting points.
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Exact approach: Spatial Branch & Bound:

• Relax nonconvexity to obtain a tractable relaxation (LP or convex NLP).

• Branch on “nonconvexities” to enforce original constraints.
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Convex Relaxation

Given: X = {x ∈ [ℓ, u] : gk(x) ≤ 0, k ∈ [m]} (continuous relaxation of MINLP)

Seek: conv(X ) – convex hull of X

• In practice, conv(X ) is impossible to construct explicitly.

Relax I: Convexify the feasible sets that are defined by each constraint individually, i.e.,⋂
k∈[m]

conv{x ∈ [ℓ, u] : gk(x) ≤ 0}

• In practice, conv{x ∈ [ℓ, u] : gk(x) ≤ 0} is impossible to construct explicitly in
general – but possible for certain cases.

Relax II: Convexify each nonconvex function gk(·)
individually, i.e.,

{x ∈ [ℓ, u] : “ conv(gk)
′′(x) ≤ 0}

gHxL

geHxL
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• In practice, convex envelope is not known explicitly in general
– except for many “simple functions”
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Convex Envelopes for “simple” functions

concave functions
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Application to Factorable Functions

Factorable Functions [McCormick, 1976]

g(x) is factorable if it can be expressed as a combination of functions from a finite set
of operators, e.g., {+,×,÷,∧, sin, cos, exp, log, | · |}, whose arguments are variables,
constants, or other factorable functions.

• Typically represented as expression trees or graphs (DAG).

• Excludes integrals x 7→
∫ x

x0
h(ζ)dζ and black-box functions.

Example:

x1 log(x2) + x3
2

+

×

x1 log

x2

∧

3



McCormick Underestimator for Factorable Functions

McCormick [1976] has shown a possibility to compose known envelopes.

For example, consider f (g(x)) with x ∈ [ℓx , ux ], f (·)
univariate.

1. Let g(x) ∈ [ℓg , ug ] for x ∈ [ℓx , ux ].

2. Let f̆ (·) ≤ f (·) be convex envelope of f (·) on
[ℓg , ug ].

3. Let ğ(·) ≤ g(·) ≤ “g(·) be convex and concave
envelopes of g(·) on [ℓx , ux ].

4. Let zmin ∈ argminz∈[ℓg ,ug ]
f̆ (z).

5. An obvious convex underestimator of f (g(x))
is given by

x 7→ f̆ (zmin).

6. The McCormick underestimator is

x 7→ f̆
(
project zmin onto [ğ(x), “g(x)]

)
(tighter for zmin ̸∈ [ğ(x), “g(x)]).

f (z) =
√

|z|, f̆ (z), zmin = 0:

 0
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 0.8

 1

-1 -0.5  0  0.5  1

f(z) and its convex envelope

g(x) = x3, x ∈ [−1, 1]:
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 1

-1 -0.5  0  0.5  1

g(x) and convex and concave envelope
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McCormick Underestimators

McCormick [1976]: A convex underestimator of f (g(·)) on [ℓx , ux ] is

x 7→


f̆ (ğ(x)), if zmin < ğ(x),

f̆ (“g(x)), if zmin > “g(x),

f̆ (zmin), else.

where zmin = argmin
z∈[ℓg ,ug ]

f (z).

• additional formulas for f (x) · g(x)

• in general nonsmooth (nondifferentiable)

• implementations for evaluation and
computation of subgradients exist, e.g., MC++
[Mitsos, Chachuat, and Barton, 2009]

• differentiable relaxation by Khan, Watson, and
Barton [2017]

⇒ usable for convex NLP relaxations
(→ solvers EAGO and MAiNGO)

Source: https://psorlab.github.io/EAGO.jl/
stable/McCormick/Usage.html

https://psorlab.github.io/EAGO.jl/stable/McCormick/Usage.html
https://psorlab.github.io/EAGO.jl/stable/McCormick/Usage.html
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f̆ (“g(x)), if zmin > “g(x),

f̆ (zmin), else.

where zmin = argmin
z∈[ℓg ,ug ]

f (z).

• additional formulas for f (x) · g(x)

• in general nonsmooth (nondifferentiable)

• implementations for evaluation and
computation of subgradients exist, e.g., MC++
[Mitsos, Chachuat, and Barton, 2009]

• differentiable relaxation by Khan, Watson, and
Barton [2017]

⇒ usable for convex NLP relaxations
(→ solvers EAGO and MAiNGO)

Source: https://psorlab.github.io/EAGO.jl/
stable/McCormick/Usage.html

https://psorlab.github.io/EAGO.jl/stable/McCormick/Usage.html
https://psorlab.github.io/EAGO.jl/stable/McCormick/Usage.html


Reformulation of Factorable MINLP

However, most global solvers reformulate factorable MINLPs by introducing new
variables and equations [Smith and Pantelides, 1996, 1997]:

x1 log(x2) + x3
2 ≤ 0

x1 ∈ [1, 2], x2 ∈ [1, e]
⇒

y1 + y2 ≤ 0

x1y3 = y1

x3
2 = y2

log(x2) = y3

x1 ∈ [1, 2], x2 ∈ [1, e]

y1 ∈ [0, 2], y2 ∈ [1, e3], y3 ∈ [0, 1]

• Bounds for new variables inherited from functions and their arguments, e.g.,
y3 ∈ log([1, e]) = [0, 1].

• Reformulation may not be unique, e.g., xyz = (xy)z = x(yz).



Factorable Reformulation in Practice

The type of algebraic expressions that is understood and not broken up further is
implementation specific, e.g., for ANTIGONE [Misener and Floudas, 2014]:

Thus, not all functions are supported by any deterministic solver, e.g.,

• ANTIGONE and BARON do not support trigonometric functions.
• SCIP does not support max or min (at the moment).
• No deterministic global solver supports external functions that are given by

routines for point-wise evaluation of function and derivatives.



Spatial Branching

Recall Spatial Branch & Bound:

✓ Relax nonconvexity to obtain a tractable relaxation.

• Branch on “nonconvexities” to enforce original constraints.

The variable bounds determine the convex relaxation, e.g.,

x2 ≤ ℓ2 +
u2 − ℓ2

u − ℓ
(x − ℓ) ∀x ∈ [ℓ, u].

Thus, branching on a nonlinear variable in a nonconvex term allows for tighter
relaxations:
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Spatial Branch and Bound

• Solve a relaxation → lower bound

• Run heuristics to look for feasible
solutions → upper bound

• Branch on a suitable variable

• Discard parts of the tree that are
infeasible or where lower bound >

best known upper bound

• Repeat until gap is below given
tolerance

Tighter variable bounds → improved relaxations → improved bounds on optimal value.
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Example



Example

Consider

minimize − 2x + 3y

such that x2 − xy + y2 ≥ 2

x − y ≤ 1

x ∈ [0, 2],

y ∈ [−2, 2]

Optimal solution:

• from the picture, both inequalities are active ⇒ y = x − 1

⇒ 2 = x2 − x(x − 1) + (x − 1)2 = x2 − x + 1 ⇒ (x − 1
2 )

2 = 5
4

• x ≥ 0 ⇒ x = 1+
√

5
2 , y =

√
5−1
2 , objective =

√
5−5
2 ≈ −1.38



Example: Solvers

Solve with GAMS (AMPL works too):

Variables x, y, z;
Equations e1, e2, e3;

e1.. -2*x + 3*y =E= z;
e2.. sqr(x)+sqr(y)-x*y =G= 2;
e3.. x - y =L= 1;

x.lo = 0; x.up = 2;
y.lo = -1; y.up = 2;

Model m /all/;
Solve m min z using qcp;

solver optimum time B&B tree

ANTIGONE -1.381966 0.00s 1 node
BARON -1.381966 0.03s 1 node
CONOPT infeasible 0.00s –
Gurobi -1.381966 0.02s 13 nodes
Ipopt -1.381966 0.00s –
Knitro -1.381966 0.01s –
Lindo API -1.381968 0.22s 3 nodes
Minos infeasible 0.01s –
SCIP -1.381966 0.05s 1 node
SNOPT infeasible 0.00s –
Octeract -1.381966 0.01s 4 nodes



Initial LP Relaxation: X enters the stage

Constraint:
x2 − xy + y2 ≥ 2, x ∈ [0, 2], y ∈ [−2, 2]

Introduce Xxx = x2, Xxy = xy , Xyy = y2.

Since x2 and y2 are convex, we can use a tangent and secant on its graph, e.g.,

4 + 4(x − 2)︸ ︷︷ ︸
tangent at x=2

≤ x2 ≤ 0 +
4 − 0
2 − 0

(x − 0)︸ ︷︷ ︸
secant from x=0 to x=2

⇒ 4x − 4 ≤ Xxx ≤ 2x

Or derive inequalities by multiplying variable bound constraints:

0 ≤ (x − 0)2 = x2 = Xxx → Xxx ≥ 0
0 ≤ (2 − x)2 = x2 − 4x + 4 = Xxx − 4x + 4 → Xxx ≥ 4x − 4
0 ≤ (2 − x)(x − 0) = −x2 + 2x = −Xxx + 2x → Xxx ≤ 2x
0 ≤ (y − (−2))2 = y2 + 4y + 4 = Xyy + 4y + 4 → Xyy ≥ −4y − 4
0 ≤ (y − (−2))(2 − y)= −y2 + 4 = −Xyy + 4 → Xyy ≤ 4
0 ≤ (2 − y)2 = y2 − 4y + 4 = Xyy − 4y + 4 → Xyy ≥ 4y − 4
0 ≤ (x − 0)(y − (−2)) = xy + 2x = Xxy + 2x → Xxy ≥ −2x
0 ≤ (x − 0)(2 − y) = −xy + 2x = −Xxy + 2x → Xxy ≤ 2x
0 ≤ (2 − x)(y − (−2)) = −xy − 2x + 2y + 4= −Xxy − 2x + 2y + 4→ Xxy ≤ −2x + 2y + 4
0 ≤ (2 − x)(2 − y) = xy − 2x − 2y + 4 = Xxy − 2x − 2y + 4 → Xxy ≥ 2x + 2y − 4
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Initial LP Relaxation

Replace (x2, xy , y2) by (Xxx ,Xxy ,Xyy )

and add derived inequalities:

min − 2x + 3y

s.t. x2 − xy + y2 ≥ 2

Xxx − Xxy + Xyy ≥ 2

x − y ≤ 1

Xxx ≥ 4x − 4

Xxx ≤ 2x

Xyy ≥ −4y − 4

Xyy ≥ 4y − 4

Xxy ≤ 2x

Xxy ≤ −2x + 2y + 4

Xxy ≥ 2x + 2y + 4

x ∈ [0, 2], y ∈ [−2, 2]

Xxx ∈ [0,∞],Xyy ∈ [−∞, 4]

Projected on (x , y):

• Lower Bound = -3

⇒ none of the inequalities in
(Xxx ,Xxy ,Xyy ) are active :-(



Tighten variable bounds

• inequalities for relaxation were
derived using bounds on x and y

• tighter bounds could mean a tighter
relaxation

x − y ≤ 1, x ∈ [0, 2] ⇒ y ≥ x − 1 ≥ −1

x − y ≤ 1, y ∈ [−2, 2] ⇒ x ≤ y + 1 ≤ 3

• updated bounds:

x ∈ [0, 2], y ∈ [−1, 2]

• from x2 − xy + y2 ≥ 2, no bound
tightening can be derived
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In General: Variable Bounds Tightening (Domain Propagation)

Tighten variable bounds [ℓ, u] such that

• the optimal value of the problem is not changed, or

• the set of optimal solutions is not changed, or

• the set of feasible solutions is not changed.
-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Formally:
min /max {xk : x ∈ R}, k ∈ [n],

where R = {x ∈ [ℓ, u] : g(x) ≤ 0, xi ∈ Z, i ∈ I} (MINLP-feasible set) or a relaxation
thereof.

Bound tightening can tighten the LP relaxation without branching.

Belotti, Lee, Liberti, Margot, and Wächter [2009]: overview on bound tightening for
MINLP



Feasibility-Based Bound Tightening

Feasbility-based Bound Tightening (FBBT):
Deduce variable bounds from single constraint and box [ℓ, u], that is

R = {x ∈ [ℓ, u] : gj(x) ≤ 0} for some fixed j ∈ [m].

• cheap and effective ⇒ used for “probing”

Linear Constraints:

b ≤
∑

i :ai>0

aixi +
∑

i :ai<0

aixi ≤ c, ℓ ≤ x ≤ u

⇒ xj ≤
1
aj


c −

∑
i :ai>0,i ̸=j

ai ℓi −
∑

i :ai<0

aiui , if aj > 0

b −
∑

i :ai>0

aiui −
∑

i :ai<0,i ̸=j

ai ℓi , if aj < 0

xj ≥
1
aj


b −

∑
i :ai>0,i ̸=j

aiui −
∑

i :ai<0

ai ℓi , if aj > 0

c −
∑

i :ai>0

ai ℓi −
∑

i :ai<0,i ̸=j

aiui , if aj < 0

• Belotti, Cafieri, Lee, and Liberti [2010]: fixed point of iterating FBBT on set of
linear constraints can be computed by solving one LP
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Feasibility-Based Bound Tightening on Expression Tree

Example:
√
x + 2

√
xy + 2

√
y ∈ [−∞, 7]

x , y ∈ [1, 9]

x

y

0 2 4 6 8
0

2
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6

8

Forward propagation:

• compute bounds on intermediate
nodes (bottom-up)

Backward propagation:

• reduce bounds using reverse
operations (top-down)

+

√
·

1

√
·

∗

x y

2

√
·

2

[1, 9] [1, 9]

Application of Interval Arithmetics [Moore,

1966]

Problem: Overestimation
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·

1

√
·

∗

x y

2

√
·

2

[1, 9] [1, 9]

[1, 81]

[1, 3] [1, 9] [1, 3]

[−∞, 7]∩[5, 27]

[1, 3] + 2 [1, 9] + 2 [1, 3] = [5, 27]

Application of Interval Arithmetics [Moore,

1966]

Problem: Overestimation



Feasibility-Based Bound Tightening on Expression Tree

Example:
√
x + 2

√
xy + 2

√
y ∈ [−∞, 7]

x , y ∈ [1, 9]

x

y

0 2 4 6 8
0

2

4

6

8

Forward propagation:

• compute bounds on intermediate
nodes (bottom-up)

Backward propagation:

• reduce bounds using reverse
operations (top-down)

+

√
·

1

√
·

∗

x y

2

√
·

2

[1, 9] [1, 9]

[1, 81]

[1, 9] [1, 3]

[5, 7]

[1, 3]

[5, 7]− 2 [1, 9]− 2 [1, 3] = [−19, 3]

Application of Interval Arithmetics [Moore,

1966]

Problem: Overestimation



Feasibility-Based Bound Tightening on Expression Tree

Example:
√
x + 2

√
xy + 2

√
y ∈ [−∞, 7]

x , y ∈ [1, 9]

x

y

0 2 4 6 8
0

2

4

6

8

Forward propagation:

• compute bounds on intermediate
nodes (bottom-up)

Backward propagation:

• reduce bounds using reverse
operations (top-down)

+

√
·

1

√
·

∗

x y

2

√
·

2

[1, 9] [1, 9]

[1, 81]

[1, 3]

[5, 7]

[1, 3] [1, 2]

([5, 7]− [1, 3]− 2 [1, 3])/2 = [−2, 2]

Application of Interval Arithmetics [Moore,

1966]

Problem: Overestimation



Feasibility-Based Bound Tightening on Expression Tree

Example:
√
x + 2

√
xy + 2

√
y ∈ [−∞, 7]

x , y ∈ [1, 9]

x

y

0 2 4 6 8
0

2

4

6

8

Forward propagation:

• compute bounds on intermediate
nodes (bottom-up)

Backward propagation:

• reduce bounds using reverse
operations (top-down)

+

√
·

1

√
·

∗

x y

2

√
·

2

[1, 9] [1, 9]

[1, 81]

[5, 7]

[1, 3] [1, 2] [1, 2]

([5, 7]− [1, 3]− 2 [1, 2])/2 = [−1, 2]

Application of Interval Arithmetics [Moore,

1966]

Problem: Overestimation



Feasibility-Based Bound Tightening on Expression Tree

Example:
√
x + 2

√
xy + 2

√
y ∈ [−∞, 7]

x , y ∈ [1, 9]

x

y

0 2 4 6 8
0

2

4

6

8

Forward propagation:

• compute bounds on intermediate
nodes (bottom-up)

Backward propagation:

• reduce bounds using reverse
operations (top-down)

+

√
·

1

√
·

∗

x y

2

√
·

2

[1, 9] [1, 9]

[5, 7]

[1, 3] [1, 2] [1, 2]

[1, 4]

[1, 2]2 = [1, 4]

Application of Interval Arithmetics [Moore,

1966]

Problem: Overestimation



Feasibility-Based Bound Tightening on Expression Tree

Example:
√
x + 2

√
xy + 2

√
y ∈ [−∞, 7]

x , y ∈ [1, 9]

x

y

0 2 4 6 8
0

2

4

6

8

Forward propagation:

• compute bounds on intermediate
nodes (bottom-up)

Backward propagation:

• reduce bounds using reverse
operations (top-down)

+

√
·

1

√
·

∗

x y

2

√
·

2

[1, 9]

[5, 7]

[1, 3] [1, 2] [1, 2]

[1, 4]

[1, 4]

[1, 3]2 = [1, 9] [1, 4]/[1, 9] = [1/9, 4]

Application of Interval Arithmetics [Moore,

1966]

Problem: Overestimation



Feasibility-Based Bound Tightening on Expression Tree

Example:
√
x + 2

√
xy + 2

√
y ∈ [−∞, 7]

x , y ∈ [1, 9]

x

y

0 2 4 6 8
0

2

4

6

8

Forward propagation:

• compute bounds on intermediate
nodes (bottom-up)

Backward propagation:

• reduce bounds using reverse
operations (top-down)

+

√
·

1

√
·

∗

x y

2

√
·

2

[5, 7]

[1, 3] [1, 2] [1, 2]

[1, 4]

[1, 4] [1, 4]

[1, 2]2 = [1, 4] [1, 4]/[1, 4] = [1/4, 4]

Application of Interval Arithmetics [Moore,

1966]

Problem: Overestimation



Feasibility-Based Bound Tightening on Expression Tree

Example:
√
x + 2

√
xy + 2

√
y ∈ [−∞, 7]

x , y ∈ [1, 4]

x

y

0 2 4 6 8
0

2

4

6

8

Forward propagation:

• compute bounds on intermediate
nodes (bottom-up)

Backward propagation:

• reduce bounds using reverse
operations (top-down)

+

√
·

1

√
·

∗

x y

2

√
·

2

[−∞, 7]

[1, 4] [1, 4]

[1, 16]

[1, 4] ∗ [1, 4] = [1, 16]

Application of Interval Arithmetics [Moore,

1966]

Problem: Overestimation



Feasibility-Based Bound Tightening on Expression Tree

Example:
√
x + 2

√
xy + 2

√
y ∈ [−∞, 7]

x , y ∈ [1, 4]

x

y

0 2 4 6 8
0

2

4

6

8

Forward propagation:

• compute bounds on intermediate
nodes (bottom-up)

Backward propagation:

• reduce bounds using reverse
operations (top-down)

+

√
·

1

√
·

∗

x y

2

√
·

2

[−∞, 7]

[1, 4] [1, 4]

[1, 16]

[1, 2] [1, 4] [1, 2]

√
[1, 4] = [1, 2]

√
[1, 16] = [1, 4]

Application of Interval Arithmetics [Moore,

1966]

Problem: Overestimation



Feasibility-Based Bound Tightening on Expression Tree

Example:
√
x + 2

√
xy + 2

√
y ∈ [−∞, 7]

x , y ∈ [1, 4]

x

y

0 2 4 6 8
0

2

4

6

8

Forward propagation:

• compute bounds on intermediate
nodes (bottom-up)

Backward propagation:

• reduce bounds using reverse
operations (top-down)

+

√
·

1

√
·

∗

x y

2

√
·

2

[1, 4] [1, 4]

[1, 16]

[1, 2] [1, 4] [1, 2]

[5, 7]

[1, 2] + 2 [1, 4] + 2 [1, 2] = [5, 14]

Application of Interval Arithmetics [Moore,

1966]

Problem: Overestimation



Feasibility-Based Bound Tightening on Expression Tree

Example:
√
x + 2

√
xy + 2

√
y ∈ [−∞, 7]

x , y ∈ [1, 4]

x

y

0 2 4 6 8
0

2

4

6

8

Forward propagation:

• compute bounds on intermediate
nodes (bottom-up)

Backward propagation:

• reduce bounds using reverse
operations (top-down)

+

√
·

1

√
·

∗

x y

2

√
·

2

[1, 4] [1, 4]

[1, 16]

[1, 2] [1, 4] [1, 2]

[5, 7]

[5, 7]− 2 [1, 4]− 2 [1, 2] = [−7, 3]

Application of Interval Arithmetics [Moore,

1966]

Problem: Overestimation



Feasibility-Based Bound Tightening on Expression Tree

Example:
√
x + 2

√
xy + 2

√
y ∈ [−∞, 7]

x , y ∈ [1, 4]

x

y

0 2 4 6 8
0

2

4

6

8

Forward propagation:

• compute bounds on intermediate
nodes (bottom-up)

Backward propagation:

• reduce bounds using reverse
operations (top-down)

+

√
·

1

√
·

∗

x y

2

√
·

2

[1, 4] [1, 4]

[1, 16]

[1, 2] [1, 2]

[5, 7]

[1, 2]

([5, 7]− [1, 2]− 2 [1, 2])/2 = [−0.5, 2]

Application of Interval Arithmetics [Moore,

1966]

Problem: Overestimation



Feasibility-Based Bound Tightening on Expression Tree

Example:
√
x + 2

√
xy + 2

√
y ∈ [−∞, 7]

x , y ∈ [1, 4]

x

y

0 2 4 6 8
0

2

4

6

8

Forward propagation:

• compute bounds on intermediate
nodes (bottom-up)

Backward propagation:

• reduce bounds using reverse
operations (top-down)

+

√
·

1

√
·

∗

x y

2

√
·

2

[1, 4] [1, 4]

[1, 16]

[1, 2] [1, 2]

[5, 7]

[1, 2]

([5, 7]− [1, 2]− 2 [1, 4])/2 = [−2.5, 2]

Application of Interval Arithmetics [Moore,

1966]

Problem: Overestimation



Feasibility-Based Bound Tightening on Expression Tree

Example:
√
x + 2

√
xy + 2

√
y ∈ [−∞, 7]

x , y ∈ [1, 4]

x

y

0 2 4 6 8
0

2

4

6

8

Forward propagation:

• compute bounds on intermediate
nodes (bottom-up)

Backward propagation:

• reduce bounds using reverse
operations (top-down)

+

√
·
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·

∗

x y

2

√
·

2

[1, 4] [1, 4]

[1, 2] [1, 2]

[5, 7]

[1, 2]

[1, 4]

[1, 2]2 = [1, 4]

Application of Interval Arithmetics [Moore,

1966]

Problem: Overestimation



Feasibility-Based Bound Tightening on Expression Tree

Example:
√
x + 2

√
xy + 2

√
y ∈ [−∞, 7]

x , y ∈ [1, 4]

x

y

0 2 4 6 8
0

2

4

6

8

Forward propagation:

• compute bounds on intermediate
nodes (bottom-up)

Backward propagation:

• reduce bounds using reverse
operations (top-down)

+

√
·
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√
·

∗

x y

2

√
·

2

[1, 4] [1, 4]

[1, 2] [1, 2]

[5, 7]

[1, 2]

[1, 4]

[1, 2]2 = [1, 4] [1, 4]/[1, 4] = [1/4, 4]

Application of Interval Arithmetics [Moore,

1966]

Problem: Overestimation



Feasibility-Based Bound Tightening on Expression Tree

Example:
√
x + 2

√
xy + 2

√
y ∈ [−∞, 7]

x , y ∈ [1, 4]

x

y

0 2 4 6 8
0

2

4

6

8

Forward propagation:

• compute bounds on intermediate
nodes (bottom-up)

Backward propagation:

• reduce bounds using reverse
operations (top-down)

+

√
·

1

√
·

∗

x y

2

√
·

2

[1, 4] [1, 4]

[1, 2] [1, 2]

[5, 7]

[1, 2]

[1, 4]

[1, 2]2 = [1, 4] [1, 4]/[1, 4] = [1/4, 4]

Application of Interval Arithmetics [Moore,

1966]

Problem: Overestimation



Back to Example: Relaxation after bound update

Problem: min{−2x + 3y : x2 − xy + y2 ≥ 2, x − y ≤ 1, x ∈ [0, 2], y ∈ [−1, 2]}

Linearization: x2 → Xxx , xy → Xxy , y2 → Xyy

Recompute initial relaxation with lower bound on y updated to −1:

0 ≤ (x − 0)2 = x2 = Xxx → Xxx ≥ 0
0 ≤ (2 − x)2 = x2 − 4x + 4 = Xxx − 4x + 4 → Xxx ≥ 4x − 4
0 ≤ (2 − x)(x − 0) = −x2 + 2x = −Xxx + 2x → Xxx ≤ 2x
0 ≤ (y − (−1))2 = y2 + y + 1 = Xyy + y + 1 → Xyy ≥ −y − 1
0 ≤ (y − (−1))(2 − y)= −y2 + y + 2 = −Xyy + y + 2 → Xyy ≤ y + 2
0 ≤ (2 − y)2 = y2 − 4y + 4 = Xyy − 4y + 4 → Xyy ≥ 4y − 4
0 ≤ (x − 0)(y − (−1)) = xy + x = Xxy + x → Xxy ≥ −x

0 ≤ (x − 0)(2 − y) = −xy + 2x = −Xxy + 2x → Xxy ≤ 2x
0 ≤ (2 − x)(y − (−1)) = −xy − x + 2y + 2= −Xxy − x + 2y + 2→ Xxy ≤ −x + 2y + 2
0 ≤ (2 − x)(2 − y) = xy − 2x − 2y + 4 = Xxy − 2x − 2y + 4 → Xxy ≥ 2x + 2y − 4



LP Relaxation after Bound Tightening

With y ≥ −1:

min − 2x + 3y

s.t. Xxx − Xxy + Xyy ≥ 2

x − y ≤ 1

Xxx ≥ 0

Xxx ≥ 4x − 4

Xxx ≤ 2x

Xyy ≥ −y − 1

Xyy ≤ y + 2

Xyy ≥ 4y − 4

Xxy ≥ −x

Xxy ≤ 2x

Xxy ≤ −x + 2y + 2

Xxy ≥ 2x + 2y + 4

x ∈ [0, 2], y ∈ [−1, 2]

Projected on (x , y):

• Lower Bound = -2.75 (improvement
from -3)



Can we get more cuts?

• we should make use of the inequality x − y ≤ 1

• Idea: multiply bounds with linear inequality

0 ≤ (1 − x + y)(x − 0) = x − x2 + xy = x − Xxx + Xxy

0 ≤ (1 − x + y)(2 − x) = 2 − x − 2x + x2 + 2y − xy = 2 − 3x + Xxx + 2y − Xxy

0 ≤ (1 − x + y)(y − (−1))= y + 1 − xy − x + y2 + y = 2y + 1 − Xxy − x + Xyy

0 ≤ (1 − x + y)(2 − y) = 2 − y − 2x + xy + 2y − y2 = 2 + y − 2x + Xxy − Xyy

Inequalities that couple several X → looks promising
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0 ≤ (1 − x + y)(y − (−1))= y + 1 − xy − x + y2 + y = 2y + 1 − Xxy − x + Xyy

0 ≤ (1 − x + y)(2 − y) = 2 − y − 2x + xy + 2y − y2 = 2 + y − 2x + Xxy − Xyy

Inequalities that couple several X → looks promising



Can we get more cuts?

• we should make use of the inequality x − y ≤ 1

• Idea: multiply bounds with linear inequality

0 ≤ (1 − x + y)(x − 0) = x − x2 + xy = x − Xxx + Xxy

0 ≤ (1 − x + y)(2 − x) = 2 − x − 2x + x2 + 2y − xy = 2 − 3x + Xxx + 2y − Xxy

0 ≤ (1 − x + y)(y − (−1))= y + 1 − xy − x + y2 + y = 2y + 1 − Xxy − x + Xyy

0 ≤ (1 − x + y)(2 − y) = 2 − y − 2x + xy + 2y − y2 = 2 + y − 2x + Xxy − Xyy

Inequalities that couple several X → looks promising



Can we get more cuts?

• we should make use of the inequality x − y ≤ 1

• Idea: multiply bounds with linear inequality

0 ≤ (1 − x + y)(x − 0) = x − x2 + xy = x − Xxx + Xxy

0 ≤ (1 − x + y)(2 − x) = 2 − x − 2x + x2 + 2y − xy = 2 − 3x + Xxx + 2y − Xxy

0 ≤ (1 − x + y)(y − (−1))= y + 1 − xy − x + y2 + y = 2y + 1 − Xxy − x + Xyy

0 ≤ (1 − x + y)(2 − y) = 2 − y − 2x + xy + 2y − y2 = 2 + y − 2x + Xxy − Xyy

Inequalities that couple several X → looks promising



LP Relaxation with additional cuts

min − 2x + 3y

s.t. Xxx − Xxy + Xyy ≥ 2

x − y ≤ 1

Xxx ≥ 0

Xxx ≥ 4x − 4

Xxx ≤ 2x

Xyy ≥ −y − 1

Xyy ≤ y + 2

Xyy ≥ 4y − 4

Xxy ≥ −x

Xxy ≤ 2x

Xxy ≤ −x + 2y + 2

Xxy ≥ 2x + 2y + 4

Xxx − Xxy ≤ x

Xxx − Xxy ≥ 3x − 2y − 2

Xxy − Xyy ≤ 2y − x + 1

Xxy − Xyy ≥ 2x − y − 2

x ∈ [0, 2], y ∈ [−1, 2]

Projected on (x , y):

• Lower Bound = -2.66 (improvement
from -2.75)



LP Relaxation with additional cuts

min − 2x + 3y

s.t. Xxx − Xxy + Xyy ≥ 2

x − y ≤ 1

Xxx ≥ 0

Xxx ≥ 4x − 4

Xxx ≤ 2x

Xyy ≥ −y − 1

Xyy ≤ y + 2

Xyy ≥ 4y − 4

Xxy ≥ −x

Xxy ≤ 2x

Xxy ≤ −x + 2y + 2

Xxy ≥ 2x + 2y + 4

Xxx − Xxy ≤ x

Xxx − Xxy ≥ 3x − 2y − 2

Xxy − Xyy ≤ 2y − x + 1

Xxy − Xyy ≥ 2x − y − 2

x ∈ [0, 2], y ∈ [−1, 2]

Projected on (x , y):

• Lower Bound = -2.66 (improvement
from -2.75)



In General: Reformulation Linearization Technique (RLT)

Consider the QCQP

min xTQ0x + bT
0 x (quadratic)

s.t. xTQkx + bT
k x ≤ ck k = 1, . . . , q (quadratic)

Ax ≤ b (linear)

ℓ ≤ x ≤ u (linear)

Introduce new variables Xi,j = xixj :

min ⟨Q0,X ⟩+ bT
0 x (linear)

s.t. ⟨Qk ,X ⟩+ bT
k x ≤ ck k = 1, . . . , q (linear)

Ax ≤ b (linear)

ℓ ≤ x ≤ u (linear)

X = xxT (quadratic)

Adams and Sherali [1986], Sherali and Alameddine [1992], Sherali and Adams [1999]:

• relax X = xxT by linear inequalities that are derived from multiplications of pairs
of linear constraints
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In General: Reformulation Linearization Technique (RLT)

Consider the QCQP

min xTQ0x + bT
0 x (quadratic)

s.t. xTQkx + bT
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RLT: Multiplying Bound Constraints

Multiplying bounds ℓi ≤ xi ≤ ui and ℓj ≤ xj ≤ uj yields

(xi − ℓi )(xj − ℓj) ≥ 0

⇒ Xi,j ≥ ℓixj + ℓjxi − ℓiℓj

(xi − ui )(xj − uj) ≥ 0

⇒ Xi,j ≥ uixj + ujxi − uiuj

(xi − ℓi )(xj − uj) ≤ 0

⇒ Xi,j ≤ ℓixj + ujxi − ℓiuj

(xi − ui )(xj − ℓj) ≤ 0

⇒ Xi,j ≤ uixj + ℓjxi − uiℓj

• these are more widely known as McCormick inequalities [McCormick, 1976]
• the resulting linear relaxation is

min ⟨Q0,X ⟩+ bT
0 x

s.t. ⟨Qk ,X ⟩+ bT
k x ≤ ck k = 1, . . . , q

Ax ≤ b, ℓ ≤ x ≤ u

Xi,j ≥ ℓixj + ℓjxi − ℓi ℓj i , j = 1, . . . , n, i ≤ j

Xi,j ≥ uixj + ujxi − uiuj i , j = 1, . . . , n, i ≤ j

Xi,j ≤ ℓixj + ujxi − ℓiuj i , j = 1, . . . , n,

X = XT

• these inequalities are used by all solvers

• not every solver introduces Xi,j variables explicitly
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RLT: Multiplying Bounds and Inequalities

Additional inequalities are derived by multiplying pairs of linear equations and bound
constraints:

(AT
k x − bk)(xj − ℓj) ≥ 0 ⇒

n∑
i=1

Ak,ixi (xj − ℓj)− bk(xj − ℓj) ≥ 0

(AT
k x − bk)(A

T
k′x − bk′) ≥ 0 ⇒

RLT is also used for polynomial programs [Sherali and Tuncbilek, 1992]:

• any monomial
∏

i x
αi
i is replaced by a new variable

• more than two bounds or (in)equalities are multiplied

• solver: RAPOSa [González-Rodríguez et al., 2022]
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Back to Example: Objective Cutoff

min{−2x + 3y : x2 − xy + y2 ≥ 2, x − y ≤ 1, x ∈ [0, 2], y ∈ [−1, 2]}

Assume the optimal solution with objective =
√

5−5
2 has been found, e.g., by a NLP

solver, but proof of optimality is still missing.

Objective cutoff: Look only for improving solutions: −2x + 3y ≤
√

5−5
2

RLT with this inequality:

0 ≤ 2Xxx − 3Xxy +

√
5

2
x −

5

2
x

0 ≤ −2Xxx + 3Xxy −
√

5

2
x +

13

2
x − 6y +

√
5 − 5

0 ≤ 2Xxy − 3Xyy +

√
5

2
y + 2x −

11

2
y +

√
5

2
−

5

2

0 ≤ −2Xxy + 3Xyy −
√

5

2
y + 4x −

7

2
y +

√
5 − 5

• Lower bound = -2.46
(improvement from -2.66)

Use objective cutoff for bound tightening: y ≤ 1
3

(√
5−5
2 + 2x

)
≤

√
5+3
6 ≈ 0.87
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More Bound Tightening

Looking at the LP relaxation including objective cutoff only, it seems that variable
bounds could be improved further:

x − y ≤ 1

−2x + 3y ≤
√

5 − 5
2

...

x ∈ [0, 2], y ∈ [−1, 0.87]

Apparently, x ≪ 2.

Propagating each inequality
individually works:

x − y ≤ 1 ⇒ x ≤ 1.87

−2x + 3y ≤ −1.38 ⇒ y ≤ 0.79

x − y ≤ 1 ⇒ x ≤ 1.79

−2x + 3y ≤ −1.38 ⇒ y ≤ 0.73

...

Eventually, this terminates with upper
bounds equal to

max{x : x − y ≤ 1,−2x + 3y ≤ −1.38}

max{y : x − y ≤ 1,−2x + 3y ≤ −1.38}

Idea: Just solve this LP!

Belotti [2013]: FBBT on two linear constraints simultaneously
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In General: Optimization-based bound tightening

Recall: Bound Tightening ≡ min /max {xk : x ∈ R}, k ∈ [n], where
R ⊇ {x ∈ [ℓ, u] : g(x) ≤ 0, xi ∈ Z, i ∈ I}

Optimization-based Bound Tightening [Quesada and

Grossmann, 1993, Maranas and Floudas, 1997, Smith and

Pantelides, 1999, . . . ]:

• R = {x : Ax ≤ b, cTx ≤ z∗} linear relaxation
(with obj. cutoff)

• simple, but effective on nonconvex MINLP:
relaxation depends on domains

• but: potentially many expensive LPs per node

?

Advanced implementation [Gleixner, Berthold, Müller, and Weltge, 2017]:

• solve OBBT LPs at root only, learn dual certificates xk ≥
∑

i rixi + µz∗ + λTb

• propagate duality certificates during tree search (“approximate OBBT”)

• greedy ordering for faster LP warmstarts, filtering of provably tight bounds
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Back to Example: Bound Tightening by OBBT

We tightened upper bounds via

max

{
x : x − y ≤ 1,−2x + 3y ≤

√
5 − 5
2

}
=

1 +
√

5
2

≈ 1.62

max

{
y : x − y ≤ 1,−2x + 3y ≤

√
5 − 5
2

}
=

√
5 − 1
2

≈ 0.62

To tighten also lower bounds, consider the complete relaxation:

min x or y

s.t. x − y ≤ 1

− 2x + 3y ≤
√

5 − 5
2

Xxx − Xxy + Xyy ≥ 2

RLT(X , x , y),

x ∈
[
0,

1 +
√

5
2

]
, y ∈

[
−1,

√
5 − 1
2

]
⇒ x ≥ 0.54, y ≥ −0.46
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FBBT on quadratic constraint

With the tighter bounds from OBBT, let us try to derive further boundtightening from
the quadratic constraint, that is

min /max{x or y : x2 − xy + y2 ≥ 2, x ∈ [0.54, 1.62], y ∈ [−0.46, 0.62]}

For y we cannot expect any tightening, but what about the lower bound for x?



FBBT on quadratic constraint – do the math

x2 − xy + y2 = (y − 1
2x)

2 + 3
4x

2 is supposed to be ≥ 2

⇒ (x − 1
2y)

2 ≥ 2 − 3
4y

2 ⇒ |x − 1
2y | ≥

√
2 − 3

4y
2

⇒ x − 1
2y ≥

√
2 − 3

4y
2 or x − 1

2y ≤ −
√

2 − 3
4y

2

⇒ x ∈

([
−∞,

1
2
y −

√
2 − 3

4
y2

]
∪

[
1
2
y +

√
2 − 3

4
y2,∞

])
∩ [0.54, 1.62]

The right-hand side now depends on y only.
We now need to find

max
y∈[−0.46,0.62]

1
2
y −

√
2 − 3

4
y2 min

y∈[−0.46,0.62]

1
2
y +

√
2 − 3

4
y2

These are univariate bound-constrained optimization problems.
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FBBT on quadratic constraint – do the math (cont.)

max
y∈[−0.46,0.62]

1
2
y −

√
2 − 3

4
y2 =︸︷︷︸

y=0.62

0.62
2

−
√

2 − 3
4
0.622 ≈ −1

min
y∈[−0.46,0.62]

1
2
y +

√
2 − 3

4
y2 =︸︷︷︸

y=−0.46

−0.46
2

+

√
2 − 3

4
(−0.46)2 ≈ 1.13

⇒ x ∈


−∞,

1
2
y −

√
2 − 3

4
y2︸ ︷︷ ︸

≈−1

 ∪

1
2
y +

√
2 − 3

4
y2︸ ︷︷ ︸

≈1.13

,∞


∩[0.54, 1.62] = [1.13, 1.62]

Note: feasible range on x is
disconnected (2 intervals);
we used x ≥ 0.54 to exclude the
left interval and derive x ≥ 1.13

Vigerske and Gleixner [2017]: general

formulas



FBBT on quadratic constraint – do the math (cont.)

max
y∈[−0.46,0.62]
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2
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2 − 3
4
0.622 ≈ −1
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Note: feasible range on x is
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we used x ≥ 0.54 to exclude the
left interval and derive x ≥ 1.13

Vigerske and Gleixner [2017]: general

formulas



Updated Relaxation after FBBT and OBBT

We derived

• x ≤ 1.62, y ≤ 0.62 via OBBT or alternating FBBT on x − y ≤ 1 and
−2x + 3y ≤ −1.38

• y ≥ −0.46 via OBBT on LP relaxation (incl. RLT cuts)
• x ≥ 1.13 via careful (avoid overestimation of interval arith.) FBBT on x2 − xy + y2 ≥ 2

Update RLT:

0 ≤ (x − 1.13)2 0 ≤ (x − 1.13)(1 − x + y)

0 ≤ (1.62 − x)2 0 ≤ (1.62 − x)(1 − x + y)

0 ≤ (x − 1.13)(1.62 − x) 0 ≤ (y + 0.46)(1 − x + y)

0 ≤ (0.62 − y)(1 − x + y)

0 ≤ (y + 0.46)2

0 ≤ (0.62 − y)2 0 ≤ (x − 1.13)(−1.38 + 2x − 3y)
0 ≤ (0.62 − y)(y + 0.46) 0 ≤ (1.62 − x)(−1.38 + 2x − 3y)

0 ≤ (y + 0.46)(−1.38 + 2x − 3y)
0 ≤ (x − 1.13)(y + 0.46) 0 ≤ (0.62 − y)(−1.38 + 2x − 3y)
0 ≤ (x − 1.13)(0.62 − y)

0 ≤ (1.62 − x)(y + 0.46) xx → Xxx , xy → Xxy , yy → Xyy

0 ≤ (1.62 − x)(0.62 − y)



Updated Relaxation (cont.)

Lower bound = -1.76 (improvement from -2.46, optimal value = -1.38)

Next steps:

• OBBT improves lower bound on y due to tighter RLT cuts
• FBBT on quad. cons. improves lower bound on x due to better bound on y

• RLT cuts tighten due to better lower bounds on x and y

• repeat
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Next steps:

• OBBT improves lower bound on y due to tighter RLT cuts
• FBBT on quad. cons. improves lower bound on x due to better bound on y

• RLT cuts tighten due to better lower bounds on x and y

• repeat



Recap

Problem: min{−2x + 3y : x2 − xy + y2 ≥ 2, x − y ≤ 1, x ∈ [0, 2], y ∈ [−2, 2]}

LP Relaxation:

min − 2x + 3y

s.t. Xxx − Xxy + Xyy ≥ 2

x − y ≤ 1

RLT(multiply bounds)

x ∈ [0, 2]

y ∈ [−2, 2]



Recap

Problem: min{−2x + 3y : x2 − xy + y2 ≥ 2, x − y ≤ 1, x ∈ [0, 2], y ∈ [−2, 2]}

Initial Relaxation:

• replace any square and bilinear term by new variable (X )
• derive cuts for X by multiplying variable bounds, e.g., (2 − x)(2 − y) ≥ 0

(also known as McCormick cuts)

LP Relaxation:

min − 2x + 3y

s.t. Xxx − Xxy + Xyy ≥ 2

x − y ≤ 1

RLT(multiply bounds)

x ∈ [0, 2]

y ∈ [−2, 2] Lower bound = -3



Recap

Problem: min{−2x + 3y : x2 − xy + y2 ≥ 2, x − y ≤ 1, x ∈ [0, 2], y ∈ [−2, 2]}

Bound Tightening:

• FBBT on linear constraint: x − y ≤ 1 ⇒ y ≥ −1

LP Relaxation:

min − 2x + 3y

s.t. Xxx − Xxy + Xyy ≥ 2

x − y ≤ 1

RLT(multiply bounds)

x ∈ [0, 2]

y ∈ [−1, 2] Lower bound = -2.75



Recap

Problem: min{−2x + 3y : x2 − xy + y2 ≥ 2, x − y ≤ 1, x ∈ [0, 2], y ∈ [−2, 2]}

RLT with Linear Inequality:

• multiply x − y ≤ 1 with variable bound, e.g., (2 − x)(1 − x + y) ≥ 0

LP Relaxation:

min − 2x + 3y

s.t. Xxx − Xxy + Xyy ≥ 2

x − y ≤ 1

RLT(bounds & x − y ≤ 1)

x ∈ [0, 2]

y ∈ [−1, 2] Lower Bound = -2.66



Recap

Problem: min{−2x + 3y : x2 − xy + y2 ≥ 2, x − y ≤ 1, x ∈ [0, 2], y ∈ [−2, 2]}

Objective Cutoff:

• look only for improving solutions: −2x + 3y ≤ −1.36
• use for FBBT and RLT (improving upper bound can improve lower bound!)

LP Relaxation:

min − 2x + 3y

s.t. Xxx − Xxy + Xyy ≥ 2

x − y ≤ 1

− 2x + 3y ≤ 1.38

RLT(bounds & linear inequ.)

x ∈ [0, 2]

y ∈ [−1, 0.87] Lower Bound = -2.46



Recap

Problem: min{−2x + 3y : x2 − xy + y2 ≥ 2, x − y ≤ 1, x ∈ [0, 2], y ∈ [−2, 2]}

Bound Tightening:

• OBBT on relaxation: min /max x or y w.r.t. LP relaxation
• expensive, best when objective cutoff included

LP Relaxation:

min − 2x + 3y

s.t. Xxx − Xxy + Xyy ≥ 2

x − y ≤ 1

− 2x + 3y ≤ 1.38

RLT(bounds & linear inequ.)

x ∈ [0.54, 1.62]

y ∈ [−0.46, 0.62]



Recap

Problem: min{−2x + 3y : x2 − xy + y2 ≥ 2, x − y ≤ 1, x ∈ [0, 2], y ∈ [−2, 2]}

Bound Tightening:

• FBBT on x2 − xy + y2 ≥ 2 ⇒ x ≥ 1.13

LP Relaxation:

min − 2x + 3y

s.t. Xxx − Xxy + Xyy ≥ 2

x − y ≤ 1

− 2x + 3y ≤ 1.38

RLT(bounds & linear inequ.)

x ∈ [1.13, 1.62]

y ∈ [−0.46, 0.62] Lower bound = -1.76



Further Techniques



Further Techniques

Dual Side (Tighter Relaxations)



Semidefinite Programming (SDP) Relaxation

min xTQ0x + bT
0 x

s.t. xTQkx + bT
k x ≤ ck

Ax ≤ b

ℓx ≤ x ≤ ux

⇔ min ⟨Q0,X ⟩+ bT
0 x

s.t. ⟨Qk ,X ⟩+ bT
k x ≤ ck

Ax ≤ b

ℓx ≤ x ≤ ux

X = xxT

• relaxing X − xxT = 0 to X − xxT ⪰ 0, which is equivalent to

X̃ :=

(
1 xT

x X

)
⪰ 0,

yields a semidefinite programming relaxation

• Anstreicher [2009]: the SDP and RLT relaxations do not dominate each other;
combining both can produce substantially better bounds



SDP Cuts

SDP is computationally demanding, so approximate by linear inequalities:

• for X̃ ∗ ̸⪰ 0 compute eigenvector v with eigenvalue λ < 0, then

⟨v , X̃ v⟩ ≥ 0

is a valid cut that cuts off X̃ ∗ [Sherali and Fraticelli, 2002]

• these cuts can be very dense (involve many variables), which slows down the LP
solver

Approaches for sparser cuts:

• Qualizza et al. [2009]: relax cut by setting entries of v to 0

• Saxena et al. [2011]: project into x-variables space (no X variables in cut)
• Sherali et al. [2012]: consider only a subset of variables and corresponding

submatrix of X
• Baltean-Lugojan et al. [2018]: pick submatrix via neural network
• SCIP [Bestuzheva et al., 2021]: consider only two variables and corresponding 2 × 2

submatrix of X
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• Saxena et al. [2011]: project into x-variables space (no X variables in cut)
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Second Order Cones (SOC)

Consider a constraint xTAx + bTx ≤ c.

If A has only one negative eigenvalue, it may be reformulated as a second-order cone
constraint [Mahajan and Munson, 2010], e.g.,

N∑
k=1

x2
k − x2

N+1 ≤ 0, xN+1 ≥ 0 ⇔

√√√√ N∑
k=1

x2
k ≤ xN+1

•
√∑N

k=1 x
2
k is a convex term that can easily be linearized

Example: x2 + y2 − z2 ≤ 0 in [−1, 1]× [−1, 1]× [0, 1]

feasible region not recognizing SOC recognizing SOC
(initial relaxation)



Cone Disaggregation

For high-dimensional cones (large N), linearizations of
√∑N

k=1 x
2
k generate dense cuts

⇒ slow LP solves.

Vielma et al. [2016]: consider disaggregated formulation in extended space:

• introduce new variables zk , k = 1, . . . ,N and add
constraints

zk ≥ x2
k

xN+1
,

N∑
k=1

zk ≤ xN+1

• then SOC
∑

k x
2
k ≤ x2

N+1 is satisfied because

1
xN+1

N∑
k=1

x2
k ≤

N∑
k=1

zk ≤ xN+1

• new cons. x2
k/xN+1 ≤ zk are 3-dimensional SOC:

x2
k ≤ zkxN+1 = 1/4((zk + xN+1)

2 − (zk − xN+1)
2)

⇔
√

4x2
k + (zk − xN+1)2 ≤ zk + xN+1

⇓
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Convexity Detection

Analyze the Hessian:

f (x) convex on [ℓ, u] ⇔ ∇2f (x) ⪰ 0 ∀x ∈ [ℓ, u]

• f (x) quadratic: ∇2f (x) constant ⇒ compute spectrum numerically
• general f ∈ C 2: estimate eigenvalues of Interval-Hessian [Nenov et al., 2004]

Analyze the Algebraic Expression:

f (x) convex ⇒ a · f (x)

convex, a ≥ 0

concave, a ≤ 0

f (x), g(x) convex ⇒ f (x) + g(x) convex

f (x) concave ⇒ log(f (x)) concave

f (x) =
∏
i

xei
i , xi ≥ 0 ⇒ f (x)


convex, ei ≤ 0 ∀i
convex, ∃j : ei ≤ 0 ∀i ̸= j ;

∑
i ei ≥ 1

concave, ei ≥ 0 ∀i ;
∑

i ei ≤ 1

[Maranas and Floudas, 1995, Bao, 2007, Fourer et al., 2009, Vigerske, 2013]

Analyze Expression for Hessian: Klaus, Merk, Wiedom, Laue, and Giesen [2022]
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Stronger relaxations with semi-continuous variables

Consider
x2 ≤ w , ℓy ≤ x ≤ uy , y ∈ {0, 1}, (with ℓ > 0).

That is, x ∈ {0} ∪ [ℓ, u].

A tight relaxation would be the convex hull of relaxations for y = 0 and y = 1:

conv

 {(0,w , 0) : w ≥ 0}︸ ︷︷ ︸
y=0

∪ {(x ,w , 1) : x2 ≤ w , x ∈ [ℓ, u]}︸ ︷︷ ︸
y=1


By just relaxing y ∈ {0, 1} to y ∈ [0, 1], one does not get this set.

However, replacing x2 ≤ w by the SOC x2 ≤ wy and w ≥ 0 is sufficient.
[Günlük and Linderoth, 2012]



Stronger relaxations with semi-continuous variables

Consider
x2 ≤ w , ℓy ≤ x ≤ uy , y ∈ {0, 1}, (with ℓ > 0).

That is, x ∈ {0} ∪ [ℓ, u].

A tight relaxation would be the convex hull of relaxations for y = 0 and y = 1:

conv

 {(0,w , 0) : w ≥ 0}︸ ︷︷ ︸
y=0

∪ {(x ,w , 1) : x2 ≤ w , x ∈ [ℓ, u]}︸ ︷︷ ︸
y=1


By just relaxing y ∈ {0, 1} to y ∈ [0, 1], one does not get this set.

However, replacing x2 ≤ w by the SOC x2 ≤ wy and w ≥ 0 is sufficient.
[Günlük and Linderoth, 2012]



Stronger relaxations with semi-continuous variables

Consider
x2 ≤ w , ℓy ≤ x ≤ uy , y ∈ {0, 1}, (with ℓ > 0).

That is, x ∈ {0} ∪ [ℓ, u].

A tight relaxation would be the convex hull of relaxations for y = 0 and y = 1:

conv

 {(0,w , 0) : w ≥ 0}︸ ︷︷ ︸
y=0

∪ {(x ,w , 1) : x2 ≤ w , x ∈ [ℓ, u]}︸ ︷︷ ︸
y=1


By just relaxing y ∈ {0, 1} to y ∈ [0, 1], one does not get this set.

However, replacing x2 ≤ w by the SOC x2 ≤ wy and w ≥ 0 is sufficient.
[Günlük and Linderoth, 2012]



Why x2 ≤ wy?

conv({(0,w , 0) : w ≥ 0} ∪ {(x ,w , 1) : x2 ≤ w , x ∈ [ℓ, u]})

=


(x ,w , y) :

x = λx1 + (1 − λ)x0,

w = λw1 + (1 − λ)w0,

y = λy1 + (1 − λ)y0,

x0 = 0, y0 = 0,w0 ≥ 0,
x2
1 ≤ w1, x1 ∈ [ℓ, u], y1 = 1
λ ∈ [0, 1]


=

(x ,w , y) :

(
x

y

)2

≤ w

y
,
x

y
∈ [ℓ, u],

y ∈ (0, 1]

︸ ︷︷ ︸
for w0=0,λ>0, using x1=x/λ,w1=w/λ,λ=y

∪{(0,w , 0) : w ≥ 0}︸ ︷︷ ︸
for w0≥0,λ=0

=
{
(x ,w , y) : x2 ≤ wy , ℓy ≤ x ≤ uy , w ≥ 0, y ∈ [0, 1]

}
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Convex Hull of Point and Convex Set

More general, consider

{(0, 0)} ∪ {(x , 1) : f (x) ≤ 0, ℓ ≤ x ≤ u} (f convex)

As before, build the convex combination of both sets and eliminate variables:

{(x , y) : f (x/y) ≤ 0, ℓy ≤ x ≤ uy , y ∈ (0, 1]} ∪ {(0, 0)}

= {(x , y) : f̃ (x , y) ≤ 0, ℓy ≤ x ≤ uy , y ∈ [0, 1]},

where f̃ (x , y) =


y f (x/y), if y > 0,

0, if y = 0,

∞, otherwise,

is the perspective function of f (x).

Important property: If f is convex, then f̃ is convex.

[Günlük and Linderoth, 2012]
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Perspective Cuts

Applying the perspective reformulation (replacing f (x) by f̃ (x , y)) in a problem can be
problematic, because f̃ (x , y) is not differentiable at y = 0.

Frangioni and Gentile [2006]: effect of perspective reformulation can be captured in
LP relaxation by supporting hyperplanes on the epigraph of f̃ (x , y):

• linearization of f (x) ≤ 0 at x = x̂ :

f (x̂) +∇f (x̂)(x − x̂) ≤ 0

• perspective cut tilts cut to be tight at (x , y) = (0, 0) by adding
(f (0)− f (x̂) +∇f (x̂)x̂)(1 − y):

f (x̂)y +∇f (x̂)(x − x̂y) + f (0)(1 − y) ≤ 0

Check: y = 0 ⇒ x = 0 ⇒ left-hand-side = f (0)

y = 1 ⇒ left-hand-side = f (x̂) +∇f (x̂)(x − x̂)

• example: f (x) = x2, x̂ = 1
• linearization cut: 1 + 2(x − 1) ≤ 0; at x = 0: −1 ≤ 0 ⇒ not active
• perspective cut: y + 2(x − y) ≤ 0; at (x , y) = (0, 0): 0 ≤ 0 ⇒ active, thus tighter
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Further Techniques

Primal Side (Find Feasible Solutions)



Sub-NLP Heuristics

Given a solution satisfying all integrality constraints,

• fix all integer variables in the MINLP

• call an NLP solver to find a local solution to the
remaining NLP

• variable fixings given by integer-feasible solution to LP
relaxation (maybe from running MIP heuristics on MIP
relaxation)

min

Multistart: run local NLP solver from random starting points to increase likelihood of
finding global optimum

Smith, Chinneck, and Aitken [2013]: sample many random starting points, move them
cheaply towards feasible region (average gradients of violated constraints), cluster, run
NLP solvers from (few) center of cluster

NLP-Diving: solve NLP relaxation, restrict bounds on fractional variable, repeat
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Sub-MIP / Sub-MINLP Heuristics

“Undercover” (SCIP) [Berthold and Gleixner, 2014]:

• Fix nonlinear variables, so problem becomes MIP

• not always necessary to fix all nonlinear variables, e.g.,
consider x · y

• find a minimal set of variables to fix by solving a Set
Covering Problem

Large Neighborhood Search [Berthold et al., 2011]:

• RENS [Berthold, 2014]: fix integer variables with integral
value in LP relaxation

• RINS, DINS, Crossover, Local Branching



Sub-MIP / Sub-MINLP Heuristics

“Undercover” (SCIP) [Berthold and Gleixner, 2014]:

• Fix nonlinear variables, so problem becomes MIP

• not always necessary to fix all nonlinear variables, e.g.,
consider x · y

• find a minimal set of variables to fix by solving a Set
Covering Problem

Large Neighborhood Search [Berthold et al., 2011]:

• RENS [Berthold, 2014]: fix integer variables with integral
value in LP relaxation

• RINS, DINS, Crossover, Local Branching



Alternating Direction

Feasibility Pump [D’Ambrosio, Frangioni, Liberti, and Lodi, 2010, 2012, Belotti and

Berthold, 2017]:

• originally for MIP [Fischetti, Glover, and Lodi, 2005]

• MINLP: alternately find feasible solutions to MIP and NLP relaxations

• solution of NLP relaxation is “rounded” to solution of MIP relaxation (by various

methods trading solution quality with computational effort)

• solution of MIP relaxation is projected onto NLP relaxation (local search)

• Geißler, Morsi, Schewe, and Schmidt [2017]: modifications for convergent
algorithm (avoid cycling)



Solver Software



Solvers

The following gives a list of MINLP solvers.

• it is incomplete

• omitted solvers that do not seem to be maintained anymore

• omitted continuous-only (NLP) solvers, e.g., COCONUT [Neumaier, 2001], Ibex
(http://www.ibex-lib.org), RAPOSa [González-Rodríguez et al., 2022], . . .

• omitted solvers without guarantee for global optimality, e.g., LocalSolver
• solver surveys:

• Kronqvist, Bernal, Lundell, and Grossmann [2019]
• Bussieck and Vigerske [2010]

http://www.ibex-lib.org


Solver Software

Solvers for Mixed-Integer Quadratic
Programs



Solvers for Mixed-Integer Quadratic Programs

CPLEX: https://www.ibm.com/products/ilog-cplex-optimization-studio

• commercial solver by IBM, unclear future

• available for all modeling languages and APIs to many languages

• convex quadratic objective and constraints

• second-order cone (SOC) constraints

• nonconvex quadratic objective (spatial branch-and-bound)

• branch-and-bound with LP and SOCP (SOC program) relaxation

GUROBI: https://www.gurobi.com

• commercial solver by GUROBI

• available for many modeling languages and APIs to many languages

• convex and nonconvex quadratic objective and constraints

• SOC constraints

• branch-and-bound with LP and SOCP (SOC program) relaxation

https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.gurobi.com
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Solvers for Mixed-Integer Quadratic Programs (cont.)

MINOTAUR: [Mahajan, Leyffer, Linderoth, Luedtke, and Munson, 2021]
https://github.com/coin-or/minotaur

• open-source solver by IIT Bombay, Argonne Lab, and UW Madison

• available for AMPL and C++ API

• convex and nonconvex quadratic objective and constraints

• spatial branch-and-bound with LP relaxation

MOSEK: https://www.mosek.com

• commercial solver by MOSEK ApS

• available for many modeling languages and APIs to many languages

• convex quadratic objectives and constraints

• SOC constraints

• branch-and-bound with LP and SOCP (SOC program) relaxation

• also SDP and some other cones

https://github.com/coin-or/minotaur
https://www.mosek.com
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Solvers for Mixed-Integer Quadratic Programs (cont.)

Pajarito: [Coey, Lubin, and Vielma, 2020] https://github.com/jump-dev/Pajarito.jl

• open-source solver by Chris Coey, Miles Lubin, and Juan Pablo Vielma

• available for JuMP, implemented in Julia

• SOC constraints, and other cones

• outer-approximation algorithm

SMIQP: [Elloumi and Lambert, 2019] https://github.com/amelie-lambert/SMIQP

• open-source solver by Amélie Lambert (CNAM CEDRIC, Paris)

• spatial branch-and-bound with quadratic convex relaxation (constructed via QCR
method)

XPRESS: https://www.fico.com/en/products/fico-xpress-optimization

• commercial solver by FICO

• available for many modeling languages and APIs to many languages

• convex quadratic objective and constraints

• second-order cone (SOC) constraints

• global MINLP solver announced

https://github.com/jump-dev/Pajarito.jl
https://github.com/amelie-lambert/SMIQP
https://www.fico.com/en/products/fico-xpress-optimization
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Solvers for Mixed-Integer Quadratic Programs (cont.)
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Solver Software

Solvers for Convex MINLP



Solvers for Convex MINLP

AOA: https://documentation.aimms.com/platform/solvers/aoa.html

• integrated in AIMMS modeling system

• outer-approximation algorithm

DICOPT: [Kocis and Grossmann, 1989]
https://distdocs.gams.com/41/docs/S_DICOPT.html

• integrated in GAMS modeling system

• outer-approximation algorithm

Juniper: [Kröger, Coffrin, Hijazi, and Nagarajan, 2018]
https://github.com/lanl-ansi/juniper.jl

• open-source solver by Los Alamos Lab

• available for JuMP, implemented in Julia

• NLP-based branch-and-bound

https://documentation.aimms.com/platform/solvers/aoa.html
https://distdocs.gams.com/41/docs/S_DICOPT.html
https://github.com/lanl-ansi/juniper.jl
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Solvers for Convex MINLP (cont.)

Knitro: https://www.artelys.com/solvers/knitro

• commercial solver by Artelys

• available for several modeling systems and many APIs

• LP/NLP-based branch-and-bound, mixed-integer sequential quadratic
programming

MINOTAUR: [Mahajan, Leyffer, Linderoth, Luedtke, and Munson, 2021]
https://github.com/coin-or/minotaur

• open-source solver by IIT Bombay, Argonne Lab, and UW Madison

• available for AMPL and C++ API

• LP-, QP-, and NLP-based branch-and-bound with fast warmstarts,
outer-approximation

Muriqui: [Melo, Fampa, and Raupp, 2020] https://wendelmelo.net/software

• open-source solver by Wendel Melo, Marcia Fampa, and Fernanda Raupp

• available for AMPL and GAMS and C++ API

• LP/NLP-based branch-and-bound, outer-approximation, various hybrids

https://www.artelys.com/solvers/knitro
https://github.com/coin-or/minotaur
https://wendelmelo.net/software
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Solvers for Convex MINLP (cont.)
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Solvers for Convex MINLP (cont.)

Pavito: https://github.com/jump-dev/Pavito.jl

• open-source solver by Chris Coey, Miles Lubin, and Juan P. Vielma
• available for JuMP, implemented in Julia
• LP/NLP-based branch-and-bound, outer-approximation
• sibling of Pajarito [Coey et al., 2020]

SHOT: [Lundell, Kronqvist, and Westerlund, 2022, Lundell and Kronqvist, 2022]
https://shotsolver.dev

• open-source solver by Andreas Lundell and Jan Kronqvist
• available for AMPL and GAMS, Mathematica, C++ API
• LP-based branch-and-bound and outer-approximation with supporting hyperplanes

(EHP algorithm)
• can utilize GUROBI for nonconvex quadratics

XPRESS-SLP: https://www.fico.com/en/products/fico-xpress-optimization

• commercial solver by FICO
• available for several modeling systems, several APIs
• mixed-integer sequential linear programming (NLP-based branch-and-bound or

sequence of MIP approximations)

https://github.com/jump-dev/Pavito.jl
https://shotsolver.dev
https://www.fico.com/en/products/fico-xpress-optimization
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Solvers for Convex MINLP (cont.)

Pavito: https://github.com/jump-dev/Pavito.jl

• open-source solver by Chris Coey, Miles Lubin, and Juan P. Vielma
• available for JuMP, implemented in Julia
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Solvers for General MINLP



Solvers for General MINLP

Alpine: [Nagarajan, Lu, Yamangil, and Bent, 2016, Nagarajan, Lu, Wang, Bent, and
Sundar, 2019] https://github.com/lanl-ansi/Alpine.jl

• open-source solver by LANL-ANSI (Los Alamos)
• available for JuMP, implemented in Julia
• at most polynomials
• adaptive, piecewise-linear McCormick convexification scheme

BARON: [Sahinidis, 1996, Tawarmalani and Sahinidis, 2005, Khajavirad and Sahinidis,
2018] https://minlp.com

• commercial solver by The Optimization Firm
• available for AIMMS, AMPL, GAMS, JuMP, and more
• spatial branch-and-bound with LP (sometimes also MIP, NLP) relaxation

EAGO: [Wilhelm and Stuber, 2020] https://github.com/PSORLab/EAGO.jl

• open-source solver by Matthew Wilhelm, PSOR Lab at Uni. of Connecticut
• available for JuMP, implemented in Julia
• propagating McCormick relaxations along the factorable structure of each

expression (spatial branch-and-bound without auxiliary variables)

https://github.com/lanl-ansi/Alpine.jl
https://minlp.com
https://github.com/PSORLab/EAGO.jl
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Solvers for General MINLP (cont.)

Lindo API: [Lin and Schrage, 2009] https://www.lindo.com

• commercial solver by Lindo Systems, Inc.

• available for LINGO and GAMS; APIs for MATLAB, C++, and other

• spatial branch-and-bound with nonlinear relaxations

MAiNGO: [Bongartz, Najman, Sass, and Mitsos, 2018]
https://git.rwth-aachen.de/avt-svt/public/maingo

• open-source solver by RWTH Aachen, Germany

• C++ and Python APIs

• propagating McCormick relaxations along the factorable structure of each
expression (spatial branch-and-bound without auxiliary variables)

Octeract: https://octeract.gg

• commercial solver by Octeract Limited

• available for AIMMS, AMPL, GAMS, JuMP and C++ API

• spatial branch-and-bound with linear relaxation

https://www.lindo.com
https://git.rwth-aachen.de/avt-svt/public/maingo
https://octeract.gg
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• available for AIMMS, AMPL, GAMS, JuMP and C++ API

• spatial branch-and-bound with linear relaxation

https://www.lindo.com
https://git.rwth-aachen.de/avt-svt/public/maingo
https://octeract.gg


Solvers for General MINLP (cont.)

Lindo API: [Lin and Schrage, 2009] https://www.lindo.com

• commercial solver by Lindo Systems, Inc.

• available for LINGO and GAMS; APIs for MATLAB, C++, and other

• spatial branch-and-bound with nonlinear relaxations

MAiNGO: [Bongartz, Najman, Sass, and Mitsos, 2018]
https://git.rwth-aachen.de/avt-svt/public/maingo

• open-source solver by RWTH Aachen, Germany

• C++ and Python APIs

• propagating McCormick relaxations along the factorable structure of each
expression (spatial branch-and-bound without auxiliary variables)

Octeract: https://octeract.gg

• commercial solver by Octeract Limited

• available for AIMMS, AMPL, GAMS, JuMP and C++ API

• spatial branch-and-bound with linear relaxation

https://www.lindo.com
https://git.rwth-aachen.de/avt-svt/public/maingo
https://octeract.gg


Solvers for General MINLP (cont.)

SCIP: [Achterberg, 2009, Bestuzheva, Besançon, Chen, Chmiela, Donkiewicz, van
Doornmalen, Eifler, Gaul, Gamrath, Gleixner, Gottwald, Graczyk, Halbig, Hoen, Hojny,
van der Hulst, Koch, Lübbecke, Maher, Matter, Mühmer, Müller, Pfetsch, Rehfeldt,
Schlein, Schlösser, Serrano, Shinano, Sofranac, Turner, Vigerske, Wegscheider,
Wellner, Weninger, and Witzig, 2021, Bestuzheva, Chmiela, Müller, Serrano, Vigerske,
and Wegscheider, 2023] https://www.scipopt.org/

• open-source solver by Zuse Institute Berlin, TU Darmstadt, RWTH Aachen, TU
Eindhoven, FAU Erlangen, GAMS, etc

• available for AMPL, GAMS, JuMP, . . . ; APIs for C, Matlab, Python, . . .

• part of a solver for constraint integer programs

• spatial branch-and-bound with linear relaxation

https://www.scipopt.org/


End.

Thank you for your attention!

Some MINLP reviews:

• Burer and Letchford [2012]

• Belotti, Kirches, Leyffer, Linderoth, Luedtke, and Mahajan [2013]

• Boukouvala, Misener, and Floudas [2016]

• Kılınç and Sahinidis [2017]

• Kronqvist, Bernal, Lundell, and Grossmann [2019]

Some books:

• Lee and Leyffer [2012]

• Locatelli and Schoen [2013]
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