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This talk has been split into two parts:

The SCIP Optimization Suite 10
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The SCIP Optimization Suite



SCIP: Solving Constraint Integer Programs

e a framework for constraint integer
programming, incorporating features from

MILP (cutting planes, LP relaxation)

CP (domain propagation)

SAT (conflict analysis, restarts)

MINLP (spatial branch-and-bound, NLPs)
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SCIP: Solving Constraint Integer Programs

e a framework for constraint integer
programming, incorporating features from

MILP (cutting planes, LP relaxation)

CP (domain propagation)

SAT (conflict analysis, restarts)

MINLP (spatial branch-and-bound, NLPs)

e a branch-cut-and-price framework

e includes full-scale solvers for MILP, MINLP,
and Pseudo-Boolean optimization (— WB-43)

e and much more: Benders decomp., exact MILP,
IS, MILP reoptimization, concurrent solving,

Presolving

cumulative and logical constraints, ...

e a platform for researchers to implement and
test own methods in a general-purpose solver

e plugin-based structure

e basis for specialized extensions (GCG,
SCIP-SDP, SCIP-Jack, QuBowl, ...)

e available open-source (Apache 2.0 license)

e readable code

% Enforce constraints %*)







GCG: Generic Column Generation

Generic MILP solver with automatic structure detection, Dantzig-Wolfe, and Benders
Decomposition.

.

SCIP




PaPILO: Parallel Presolve for Integer and Linear Optimization

An independent library for presolving MILPs in parallel and with arbitrary precision.
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UG: Ubiquity Generator

Parallelization framework for solvers doing tree-search or Paralll search tree generated by UG [l oasesoer 1
Base solver 2

other parallelizable tasks. s
Base solver 5

e distributed and shared memory environments s

]
=
e normal and racing ramp-up, checkpointing B ocaoners
-
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e more from Yuji in WB-43 —
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e Simplex LP solver

e high precision and exact solving

e iterative refinement



SoPlex, ZIMPL

SoPlex: Sequential object-oriented simPlex
e Simplex LP solver
e high precision and exact solving

e iterative refinement

ZIMPL: Zuse Institute Mathematical Programming
Language

e Algebraic modeling language in the style of AMPL

e rational arithmetic
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SCIP can now solve mixed-integer linear programs over Q
exactly: no rounding errors, zero tolerances

e relies on GMP, MPFR, and Boost
e exact reading of MPS, LP, CIP, OPB/WBO, and ZIMPL

e new constraint handler for linear constraints in rational numbers

e exact presolve in rational arithmetic via PaPILO

e exact LP relaxation, that can be solved with SoPlex or QSopt_ex

e cheaper numerically safe dual bounding techniques that post-process
floating-point LP solves (bound shift, project-and-shift)

e LP infeasibility analysis (Farkas proof) with safe rounding

e domain propagation on linear constraints with safe rounding

e Gomory mixed-integer cuts with safe rounding

e post-processing solutions from primal heuristics

e reliability pseudo-cost branching

e other separators disabled, symmetry handling disabled, etc

e log deductions in solving process (without presolve) for verification with VIPR

e MIP-DD supports exact MILP, too
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MIPLIB 2017 benchmark set, 3 random seeds, 2h time limit

e default SCIP (floating-point) solves 342 instance+seed combinations

e disable all features that are missing in exact SCIP — 235 solved
e exact SCIP solves 161

153 can be solved in any configuration; on these instance+seed:

e disabling SCIP features (floating-point mode) increases mean time by 89% and
mean nodes by 161%

e switching to exact mode increases time by 258% and nodes by 155% (in addition)



Presolve: Implicit Integral Variables

A variable is implicit integral, if constraints (and objective) imply that it takes an
integral value in any feasible (or any optimal, or at least one optimal) solution, e.g.,

e x+y=0,x€Z = y¢clZiffeasible

e maxy,st. x+y <0, x€Z = yecZif optimal

Useful property for branching, cut strengthening, primal heuristics, domain
propagation, ...

So far, SCIP's presolve could detect implicit integrality for only one variable at a time.
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Now, whole sets of implicit integral variables can be detected:

e partition variables into (x, y, z) such that constraints take form

Ax +By <d with A,d integral, B totally unimodular!
E x +Fz <h
xeZ"

e for any fixing x := X, the polyhedron {y : By < d — AX} is integral
= y is implicit integral
o SCIP very fast detects (transposed) network matrices B, a large sub-class of
totally unimodular matrices
e implicit integrality now detected on 69% of MIPLIB2017 instances (SCIP 9: 20%)

e mean fraction of implicit integral variables increased from 3% to 19%

Levery square submatrix has determinant -1, 0, or 1



Presolve: PaPILO updates

e PaPILO now licensed under Apache 2.0
e added clique merging
e faster column domination presolve by topological compression of domination arc

sets
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e SCIP can detect permutation symmetries, i.e., map v : R" — R"
with permutation 7w on {1,...,n} s.t.

’V(X) = (Xﬂfl(l)v s axfrfl(n))

and handle via SST cuts and orbitopal reduction (lex. order)

e now also reflection symmetries can be detected, i.e

P(X) = (S1X-1(1)s - - - 5 S0X=1(n)) forse {-1,1}"

e translate variable domain to be centered at origin /
e ‘“duplicate” symmetry detection graph via negated variables and
coefficients

e good performance improvements on testsets of geometric /

packing, kissing number, and energy minimization problems o sy e

e MIPLIB2017: reflection symmetries on 6% of instances; solve more instances, but
slowdown on average
e MINLPLib: only 6 instances, e.g., due to pre-existing symmetry breaking cons.

e symmetry detection now also for pseudo-boolean constraints
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Ve = l_IX\,7 x, € {0, 1},
vef
Assume k additional overlapping binary products

ye/,:Hx\,, eNf#0,i=1,... k.

vee;

Rewrite the standard cut for f as

D> > (1=x)+ Y. (1-x)=1

i=1 vEfne; vef\uk  f

replace by 1 —Ye;



Separator: k-flower inequalities

Consider a binary product constraints

Vr = 1_‘[X\,7 X, € {O7 1},
vef
Assume k additional overlapping binary products

:Hxv, enNf#£0,i=1... k.

vee;

The k-flower inequality is

k
yitY (l=y)+ > (1-x)>1
i=1

vEf\U’:

SCIP separates these inequalities efficiently for k = 1 and k = 2.
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GCG: New Primal Heuristic IPColGen [Maher, Rénnberg 2023]

Large-Neighborhood-Search heuristic for set packing/partitioning/covering problems:

e Destroy-Repair:
e consider only columns active in current solution
e remove some of the these columns
e generate new columns to regain a feasible solution

e Specialized pricing scheme to repair feasibility:

i 0 djaj — TER iginal prici bjective, d dbyvyel0,1
(CA,r:;IEnAq c+ ‘Zua Zua original pricing objective, damped by v € [0, 1]

iclp icle
acking cons. already filled by partial sol.
+ Z Ma; p ‘ g. y y P
- static big-M penalty
ielrt
packing cons. not filled by partial sol.
+ Z /Blai . .
o increase (3; when column with a; = 1 found
e
Z Gia cover cons. not filled by partial sol.
o /’ increase i when column with a; = 1 found
ielc
dynamic ] penalties, |n|t|a||y Z€ero (partition = packing + covering)

e on 160 suitable MIPLIB2017 instances: 5% improvement in gap between optimal
value and primal bound
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SCIP: New Primal Heuristic Kernel Search [Halbig, G6B, Weninger 2023]

Based on Guastaroba, Savelsbergh, and Speranza (2017): Adaptive Kernel Search — A

heuristic for solving Mixed Integer linear Programs

find suitable/promising variables to define coeeoecoeeeo000ee  amme

a Kernel, e.g., nonzero value in LP solution — e o o o Kemel

split remaining variables into buckets, e.g., Buckets
0—eoo e ecoceoee
Bucket 1 Bucket 2 Bucket3  Bucket4

by logarithm of reduced costs
unite Kernel with each bucket to create several easier problems
solve each “easy” problem after fixing all other variables

update the Kernel after each solve by adding variables nonzero in last improving
solution
additional adjustments if problem decomposition is available: ensure each bucket

contains variables from all blocks



SCIP: Cut-based Conflict Analysis

[Mexi, Serrano, Berthold, Gleixner, Nordstrom 2024]

Encountering an infeasible branch-and-bound node, conflict
analysis is about obtaining a constraint that would have
identified the infeasibility earlier.

e so far, SCIP could derive bound disjunctions
V{xi S bi} (SAT-based approach) or use Farkas proof

from infeasible LP



SCIP: Cut-based Conflict Analysis

[Mexi, Serrano, Berthold, Gleixner, Nordstrom 2024]

Encountering an infeasible branch-and-bound node, conflict
analysis is about obtaining a constraint that would have
identified the infeasibility earlier.

e so far, SCIP could derive bound disjunctions
V{xi S bi} (SAT-based approach) or use Farkas proof
from infeasible LP

e now, directly use the linear constraints that were
responsible for the bound tightenings that lead to
infeasibility

e a sequence of linear combinations, integer roundings,
and MIR cut generation to derive a cut that separates
the infeasible local domain

e more details in \WB-43
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SCIP: Probabilistic Lookahead Strong Branching
[Mexi, Shamsi, Besancon, le Bodic 2024]

e stop strong branching when expected tree size after evaluating one more
candidate is not smaller than the current tree size

SCIP: Ancestral Pseudocosts

e approximate longer-term influence of branching decisions

e include LP bound improvements from subsequent levels into pseudo-costs
SCIP: Mix Integer and Nonlinear Branching

e allow to branch on variable in nonconvex term before integrality constraints are
satisfied

GCG: Component Bound Branching

e branch entirely in reformulated problem, similar to Vanderbeck's generic
branching scheme (2011), but less complex



More News from GCG:

e now licensed under Apache 2.0

e new JSON-based file format for decomposition: allows for nested decompositions

and symmetry info
e new pricing solvers: GCG (nested decomp.) and HiGHS

e easier addition of new constraint to master problem (“extended master

constraints”)

e decomposition scores are now plugins



More News from GCG:

e now licensed under Apache 2.0

e new JSON-based file format for decomposition: allows for nested decompositions
and symmetry info

e new pricing solvers: GCG (nested decomp.) and HiGHS

easier addition of new constraint to master problem (“extended master

constraints”)

e decomposition scores are now plugins

Benders in SCIP:

e full solution can now be obtained if decomposition happens in SCIP
e allow for max; 0; instead of 3, 6; objective function

e distinguish master and linking variables
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e a subset of the problem’s constraints and variable
bounds that cannot be satisfied jointly and that
becomes feasible if reducing further



Infeasibility Analysis

Irreducible Infeasible Subsystem

e a subset of the problem’s constraints and variable
bounds that cannot be satisfied jointly and that
becomes feasible if reducing further

e SCIP and MIP-DD can now compute |IS by greedy
algorithms, either building up from an empty problem
or reducing from the full problem



Interfaces

PySCIPOpt:

e |Vlatrix variables are now available, e.g.,

x = scip.addMatrixVar((2,2), vtype=’C’, name=’x’, ub=8)
scip.addMatrixCons(x + y <= z)
scip.addMatrixCons(x @ y <= x)

e built on NumPy, thus can use all standard NumPy ops (@, *, +, **, ...)

e mix scalars, vectors, matrices with automatic NumPy broadcasting
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Interfaces

PySCIPOpt:

e |Vlatrix variables are now available, e.g.,

x = scip.addMatrixVar((2,2), vtype=’C’, name=’x’, ub=8)
scip.addMatrixCons(x + y <= z)
scip.addMatrixCons(x @ y <= x)

e built on NumPy, thus can use all standard NumPy ops (@, *, +, **, ...)

e mix scalars, vectors, matrices with automatic NumPy broadcasting

russcip:

e separator and constraint handler access

e new methods to add cuts

SCIP.ji:

e event handler access

e MinUC computation



SCIP solving statistics

SCIP can prints hundreds of line of statistics on the solving process.

SCIP Status : solving was interrupted [gap limit reached]

Total Time : 0.64
solving 0.63
presolving 0.03 (included in solving)
reading 0.01
copying 0.01 (5 #copies) (minimal 0.00, maximal 0.00, average 0.00)

Original Problem
Problem name : BELLS
Variables : 104 (30 binary, 28 integer, 46 continuous)
implied integral : O (O binary, O integer, O continuous)
Constraints : 91 initial, 91 maximal
Objective : minimize, 74 non-zeros (abs.min = 0.1825, abs.max = 60000)

Presolved Problem
Problem name : t_BELLS
Variables : 30 (2 binary, 11 integer, 17 continuous)
implied integral : O (0 binary, O integer, O continuous)
Constraints : 61 initial, 62 maximal
Objective : minimize, 28 non-zeros (abs.min = 1.41693, abs.max = 59000)
Nonzeros : 553 constraint, 0 clique table

Presolvers :  ExecTime SetupTime Calls FixedVars AggrVars ChgTypes ChgBounds AddHoles  DelCons  AddCons  Chg
boundshift : 0.00 0.00 0 0 0 0 0 0 0
convertinttobin 0.00 0.00 0 0 0 0 0 0 0 0
domcol 0.00 0.00 5 1 [ 0 0 0 0 0
dualagg 0.00 0.00 0 [ 0 0 0 0 0 0
dualcomp 0.00 0.00 5 0 0 0 0 0 0 0
dualinfer 0.00 0.00 0 0 [ 0 0 0 0 0
dualsparsify 0.00 0.00 1 [} 0 0 0 0 0 0
gateextraction 0.00 0.00 0 [ 0 0 0 0 0 0
implics 0.00 0.00 12 0 0 [ 0 0 0 0
implint 0.00 0.00 0 0 0 0 0 0 0 0
inttobinary 0.00 0.00 49 0 2 2 0 0 0 0
milp 0.00 0.00 4 4 2 0 15 0 0 0



SCIP solving statistics

SCIP can prints hundreds of line of statistics on the solving process.

SCIP Status : solving was interrupted [gap limit reached]

Total Time : 0.64
solving . 0 A2
presolving Now this information is available via an APl and JSON.
reading
copying "origprob" : {

Original Problem "description" : "original problem statistics table",

Problem name "num_binary_variables" : 30
Variables "num_continuous_variables" : 46,
implied integral "num_implied_binary_variables" : O,
Constraints "num_implied_continuous_variables" : 0,
Objective "num_implied_integer_variables" : 0,

Presolved Problem "num_initial_constraints" : 91,
Problem name "num_integer_variables" : 28,
Variables "num_maximal_constraints" : 91,
implied integral "num_variables" : 104,

Constraints "objective_abs_max" : 60000,
Objective "objective_abs_min" : 0.1825,
Nonzeros "objective_non_zeros" : 74,

Presolvers "objective_sense" : "minimize", GlCons  AddCons  Chg
boundshift "problem_name" : "BELL5S" 0
convertinttobin 0 0
domcol "presolvedprob” : { o o
dualagg "clique_table_nonzeros" : 0, 0 0
dualcomp "constraint_nonzeros" : 539, 0 0
dualinfer "description" "presolved problem statistics table", 0 0
dualsparsify "num_binary_variables" : 2, 0 0
gateextraction "num_continuous_variables" : 17, 0 0
implics "num_implied_binary_variables" : 0, 0 0
implint "nun_implied_continuous_variables" : 0, 0 0
inttobinary "num_implied_integer_variables" : 0, ° o
milp "num_initial_constraints" : 60, 0 0
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e Everything is already publicly available in the development branches (master or
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e SCIP Optimization Suite 10 should be released in the next months.
e Everything is already publicly available in the development branches (master or
develop) on https://github.com/scipopt.

e A release report with many details will be available again.
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