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Outline

This talk has been split into two parts:

The SCIP Optimization Suite︸ ︷︷ ︸
Part 1

10︸︷︷︸
Part 2



The SCIP Optimization Suite



SCIP: Solving Constraint Integer Programs

• a framework for constraint integer
programming, incorporating features from

• MILP (cutting planes, LP relaxation)

• CP (domain propagation)

• SAT (conflict analysis, restarts)

• MINLP (spatial branch-and-bound, NLPs)

• a branch-cut-and-price framework

• includes full-scale solvers for MILP, MINLP,

and Pseudo-Boolean optimization (→ WB-43)

• and much more: Benders decomp., exact MILP,

IIS, MILP reoptimization, concurrent solving,

cumulative and logical constraints, . . .

• a platform for researchers to implement and
test own methods in a general-purpose solver

• plugin-based structure

• basis for specialized extensions (GCG,

SCIP-SDP, SCIP-Jack, QuBowl, . . .)

• available open-source (Apache 2.0 license)

• readable code

CP

CIP
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SCIP plugins

Generic MILP solver with automatic structure detection, Dantzig-Wolfe, and Benders

Decomposition.
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GCG: Generic Column Generation

Generic MILP solver with automatic structure detection, Dantzig-Wolfe, and Benders

Decomposition.
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PaPILO: Parallel Presolve for Integer and Linear Optimization

An independent library for presolving MILPs in parallel and with arbitrary precision.
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UG: Ubiquity Generator

Parallelization framework for solvers doing tree-search or

other parallelizable tasks.

• distributed and shared memory environments

• normal and racing ramp-up, checkpointing

• more from Yuji in WB-43
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SoPlex, ZIMPL

SoPlex: Sequential object-oriented simPlex

• Simplex LP solver

• high precision and exact solving

• iterative refinement

ZIMPL: Zuse Institute Mathematical Programming

Language

• Algebraic modeling language in the style of AMPL

• rational arithmetic
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SCIP Optimization Suite Ecosystem https://github.com/scipopt
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Exact MILP Solving [Eifler, Gleixner 2023, 2024]

SCIP can now solve mixed-integer linear programs over Q
exactly: no rounding errors, zero tolerances

• relies on GMP, MPFR, and Boost

• exact reading of MPS, LP, CIP, OPB/WBO, and ZIMPL

• new constraint handler for linear constraints in rational numbers

• exact presolve in rational arithmetic via PaPILO

• exact LP relaxation, that can be solved with SoPlex or QSopt ex

• cheaper numerically safe dual bounding techniques that post-process

floating-point LP solves (bound shift, project-and-shift)

• LP infeasibility analysis (Farkas proof) with safe rounding

• domain propagation on linear constraints with safe rounding

• Gomory mixed-integer cuts with safe rounding

• post-processing solutions from primal heuristics

• reliability pseudo-cost branching

• other separators disabled, symmetry handling disabled, etc

• log deductions in solving process (without presolve) for verification with VIPR

• MIP-DD supports exact MILP, too
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Exact MILP Solving: Performance

MIPLIB 2017 benchmark set, 3 random seeds, 2h time limit

• default SCIP (floating-point) solves 342 instance+seed combinations

• disable all features that are missing in exact SCIP → 235 solved

• exact SCIP solves 161

153 can be solved in any configuration; on these instance+seed:

• disabling SCIP features (floating-point mode) increases mean time by 89% and

mean nodes by 161%

• switching to exact mode increases time by 258% and nodes by 155% (in addition)
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Presolve: Implicit Integral Variables

A variable is implicit integral, if constraints (and objective) imply that it takes an

integral value in any feasible (or any optimal, or at least one optimal) solution, e.g.,

• x + y = 0, x ∈ Z ⇒ y ∈ Z if feasible

• max y , s.t. x + y ≤ 0, x ∈ Z ⇒ y ∈ Z if optimal

Useful property for branching, cut strengthening, primal heuristics, domain

propagation, . . .

So far, SCIP’s presolve could detect implicit integrality for only one variable at a time.



Presolve: Implicit Integrality via TU matrices [van der Hulst, Walter 2024, 2025]

Now, whole sets of implicit integral variables can be detected:

• partition variables into (x , y , z) such that constraints take form

Ax +B y ≤ d with A, d integral, B totally unimodular1

E x +F z ≤ h

x ∈ Zn

• for any fixing x := x̄ , the polyhedron {y : By ≤ d − A x̄} is integral

⇒ y is implicit integral

• SCIP very fast detects (transposed) network matrices B, a large sub-class of

totally unimodular matrices

• implicit integrality now detected on 69% of MIPLIB2017 instances (SCIP 9: 20%)

• mean fraction of implicit integral variables increased from 3% to 19%

1every square submatrix has determinant -1, 0, or 1
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Presolve: PaPILO updates

• PaPILO now licensed under Apache 2.0

• added clique merging

• faster column domination presolve by topological compression of domination arc

sets



SCIP: Reflection Symmetries [Hojny 2024]

• SCIP can detect permutation symmetries, i.e., map γ : Rn → Rn

with permutation π on {1, . . . , n} s.t.

γ(x) = (xπ−1(1), . . . , xπ−1(n))

and handle via SST cuts and orbitopal reduction (lex. order)

• now also reflection symmetries can be detected, i.e.,

ρ(x) = (s1xπ−1(1), . . . , snxπ−1(n)) for s ∈ {−1, 1}n

• translate variable domain to be centered at origin

• “duplicate” symmetry detection graph via negated variables and

coefficients

• good performance improvements on testsets of geometric

packing, kissing number, and energy minimization problems

• MIPLIB2017: reflection symmetries on 6% of instances; solve more instances, but

slowdown on average

• MINLPLib: only 6 instances, e.g., due to pre-existing symmetry breaking cons.

• symmetry detection now also for pseudo-boolean constraints
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Separator: k-flower inequalities

Consider a binary product constraints

yf =
∏
v∈f

xv , xv ∈ {0, 1},

Assume k additional overlapping binary products

yei =
∏
v∈ei

xv , ei ∩ f ̸= ∅, i = 1, . . . , k.

The standard relaxation includes the cut

yf +
∑
v∈f

(1− xv ) ≥ 1
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Separator: k-flower inequalities

Consider a binary product constraints

yf =
∏
v∈f

xv , xv ∈ {0, 1},

Assume k additional overlapping binary products

yei =
∏
v∈ei

xv , ei ∩ f ̸= ∅, i = 1, . . . , k.

The k-flower inequality is

yf +
k∑

i=1

(1− yei ) +
∑

v∈f \∪k
i=1fi

(1− xv ) ≥ 1

SCIP separates these inequalities efficiently for k = 1 and k = 2.



GCG: New Primal Heuristic IPColGen [Maher, Rönnberg 2023]

Large-Neighborhood-Search heuristic for set packing/partitioning/covering problems:

• Destroy-Repair:
• consider only columns active in current solution

• remove some of the these columns

• generate new columns to regain a feasible solution

• Specialized pricing scheme to repair feasibility:

min
(c,a)∈Aq

c +

γ

∑
i∈Ip

ūiai −

γ

∑
i∈I c

ūiai original pricing objective

, damped by γ ∈ [0, 1]

+
∑
i∈Îp1

Mai
packing cons. already filled by partial sol.

static big-M penalty

+
∑
i∈Îp0

βiai
packing cons. not filled by partial sol.

increase βi when column with ai = 1 found

−
∑
i∈Î c0

βiai
cover cons. not filled by partial sol.

increase βi when column with ai = 1 found

dynamic β penalties, initially zero

(partition = packing + covering)

• on 160 suitable MIPLIB2017 instances: 5% improvement in gap between optimal

value and primal bound
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SCIP: New Primal Heuristic Kernel Search [Halbig, Göß, Weninger 2023]

Based on Guastaroba, Savelsbergh, and Speranza (2017): Adaptive Kernel Search – A

heuristic for solving Mixed Integer linear Programs

• find suitable/promising variables to define

a Kernel, e.g., nonzero value in LP solution

• split remaining variables into buckets, e.g.,

by logarithm of reduced costs

• unite Kernel with each bucket to create several easier problems

• solve each “easy” problem after fixing all other variables

• update the Kernel after each solve by adding variables nonzero in last improving

solution

• additional adjustments if problem decomposition is available: ensure each bucket

contains variables from all blocks
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• additional adjustments if problem decomposition is available: ensure each bucket

contains variables from all blocks
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SCIP: Cut-based Conflict Analysis

[Mexi, Serrano, Berthold, Gleixner, Nordström 2024]

Encountering an infeasible branch-and-bound node, conflict

analysis is about obtaining a constraint that would have

identified the infeasibility earlier.

• so far, SCIP could derive bound disjunctions∨
i{xi ≶ bi} (SAT-based approach) or use Farkas proof

from infeasible LP

• now, directly use the linear constraints that were

responsible for the bound tightenings that lead to

infeasibility

• a sequence of linear combinations, integer roundings,

and MIR cut generation to derive a cut that separates

the infeasible local domain

• more details in WB-43
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Branching

SCIP: Probabilistic Lookahead Strong Branching

[Mexi, Shamsi, Besançon, le Bodic 2024]

• stop strong branching when expected tree size after evaluating one more

candidate is not smaller than the current tree size

SCIP: Ancestral Pseudocosts

• approximate longer-term influence of branching decisions

• include LP bound improvements from subsequent levels into pseudo-costs

SCIP: Mix Integer and Nonlinear Branching

• allow to branch on variable in nonconvex term before integrality constraints are

satisfied

GCG: Component Bound Branching

• branch entirely in reformulated problem, similar to Vanderbeck’s generic

branching scheme (2011), but less complex
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Decomposition

More News from GCG:

• now licensed under Apache 2.0

• new JSON-based file format for decomposition: allows for nested decompositions

and symmetry info

• new pricing solvers: GCG (nested decomp.) and HiGHS

• easier addition of new constraint to master problem (“extended master

constraints”)

• decomposition scores are now plugins

Benders in SCIP:

• full solution can now be obtained if decomposition happens in SCIP

• allow for maxi θi instead of
∑

i θi objective function

• distinguish master and linking variables
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Infeasibility Analysis

Irreducible Infeasible Subsystem

• a subset of the problem’s constraints and variable

bounds that cannot be satisfied jointly and that

becomes feasible if reducing further

• SCIP and MIP-DD can now compute IIS by greedy

algorithms, either building up from an empty problem

or reducing from the full problem
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Interfaces

PySCIPOpt:

• Matrix variables are now available, e.g.,

x = scip.addMatrixVar((2,2), vtype=’C’, name=’x’, ub=8)

scip.addMatrixCons(x + y <= z)

scip.addMatrixCons(x @ y <= x)

• built on NumPy, thus can use all standard NumPy ops (@, *, +, **, . . . )

• mix scalars, vectors, matrices with automatic NumPy broadcasting

russcip:

• separator and constraint handler access

• new methods to add cuts

SCIP.jl:

• event handler access

• MinUC computation
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SCIP solving statistics

SCIP can prints hundreds of line of statistics on the solving process.

SCIP Status : solving was interrupted [gap limit reached]

Total Time : 0.64

solving : 0.63

presolving : 0.03 (included in solving)

reading : 0.01

copying : 0.01 (5 #copies) (minimal 0.00, maximal 0.00, average 0.00)

Original Problem :

Problem name : BELL5

Variables : 104 (30 binary, 28 integer, 46 continuous)

implied integral : 0 (0 binary, 0 integer, 0 continuous)

Constraints : 91 initial, 91 maximal

Objective : minimize, 74 non-zeros (abs.min = 0.1825, abs.max = 60000)

Presolved Problem :

Problem name : t_BELL5

Variables : 30 (2 binary, 11 integer, 17 continuous)

implied integral : 0 (0 binary, 0 integer, 0 continuous)

Constraints : 61 initial, 62 maximal

Objective : minimize, 28 non-zeros (abs.min = 1.41693, abs.max = 59000)

Nonzeros : 553 constraint, 0 clique table

Presolvers : ExecTime SetupTime Calls FixedVars AggrVars ChgTypes ChgBounds AddHoles DelCons AddCons ChgSides ChgCoefs

boundshift : 0.00 0.00 0 0 0 0 0 0 0 0 0 0

convertinttobin : 0.00 0.00 0 0 0 0 0 0 0 0 0 0

domcol : 0.00 0.00 5 1 0 0 0 0 0 0 0 0

dualagg : 0.00 0.00 0 0 0 0 0 0 0 0 0 0

dualcomp : 0.00 0.00 5 0 0 0 0 0 0 0 0 0

dualinfer : 0.00 0.00 0 0 0 0 0 0 0 0 0 0

dualsparsify : 0.00 0.00 1 0 0 0 0 0 0 0 0 0

gateextraction : 0.00 0.00 0 0 0 0 0 0 0 0 0 0

implics : 0.00 0.00 12 0 0 0 0 0 0 0 0 0

implint : 0.00 0.00 0 0 0 0 0 0 0 0 0 0

inttobinary : 0.00 0.00 49 0 2 2 0 0 0 0 0 0

milp : 0.00 0.00 4 4 2 0 15 0 0 0 0 0

qpkktref : 0.00 0.00 0 0 0 0 0 0 0 0 0 0

redvub : 0.00 0.00 0 0 0 0 0 0 0 0 0 0

sparsify : 0.00 0.00 2 0 0 0 0 0 0 0 0 0

stuffing : 0.00 0.00 0 0 0 0 0 0 0 0 0 0

trivial : 0.00 0.00 49 13 0 0 0 0 0 0 0 0

tworowbnd : 0.00 0.00 0 0 0 0 0 0 0 0 0 0

dualfix : 0.00 0.00 49 3 0 0 0 0 0 0 0 0

genvbounds : 0.00 0.00 0 0 0 0 0 0 0 0 0 0

probing : 0.00 0.00 2 3 0 0 4 0 0 0 0 0

pseudoobj : 0.00 0.00 8 0 0 0 6 0 0 0 0 0

symmetry : 0.00 0.00 1 0 0 0 0 0 0 0 0 0

vbounds : 0.00 0.00 4 0 0 0 0 0 0 0 0 0

varbound : 0.00 0.00 41 0 0 0 0 0 1 1 0 0

knapsack : 0.00 0.00 2 0 0 0 0 0 4 8 0 0

setppc : 0.00 0.00 34 0 4 0 0 0 16 0 0 0

linear : 0.00 0.00 57 2 20 0 208 0 45 0 3 32

bounddisjunction : 0.00 0.00 12 0 0 0 0 0 6 0 0 0

benders : 0.00 0.00 0 0 0 0 0 0 0 0 0 0

components : 0.03 0.00 3 22 0 0 0 0 18 0 0 0

root node : - - - 16 - - 136 - - - - -

Now this information is available via an API and JSON.
"origprob" : {

"description" : "original problem statistics table",

"num_binary_variables" : 30,

"num_continuous_variables" : 46,

"num_implied_binary_variables" : 0,

"num_implied_continuous_variables" : 0,

"num_implied_integer_variables" : 0,

"num_initial_constraints" : 91,

"num_integer_variables" : 28,

"num_maximal_constraints" : 91,

"num_variables" : 104,

"objective_abs_max" : 60000,

"objective_abs_min" : 0.1825,

"objective_non_zeros" : 74,

"objective_sense" : "minimize",

"problem_name" : "BELL5"

},

"presolvedprob" : {

"clique_table_nonzeros" : 0,

"constraint_nonzeros" : 539,

"description" : "presolved problem statistics table",

"num_binary_variables" : 2,

"num_continuous_variables" : 17,

"num_implied_binary_variables" : 0,

"num_implied_continuous_variables" : 0,

"num_implied_integer_variables" : 0,

"num_initial_constraints" : 60,

"num_integer_variables" : 10,

"num_maximal_constraints" : 61,

"num_variables" : 29,

"objective_abs_max" : 59000,

"objective_abs_min" : 1.41693,

"objective_non_zeros" : 27,

"objective_sense" : "minimize",

"problem_name" : "t_BELL5"

},

"presolver" : {

"description" : "presolver statistics table",

"plugins" : {

"SOS1" : {

"added_constraints" : 0,

"added_holes" : 0,

"aggregated_vars" : 0,

"changed_bounds" : 0,

"changed_coefficients" : 0,

"changed_sides" : 0,

"changed_var_types" : 0,

"deleted_constraints" : 0,

"description" : "SOS1 constraint handler",

"fixed_vars" : 0,

"presol_calls" : 0,

"presol_time" : 0,

"setup_time" : 3e-06

},

"SOS2" : {

"added_constraints" : 0,

"added_holes" : 0,

"aggregated_vars" : 0,

"changed_bounds" : 0,
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Availability

• SCIP Optimization Suite 10 should be released in the next months.

• Everything is already publicly available in the development branches (master or

develop) on https://github.com/scipopt.

• A release report with many details will be available again.

https://github.com/scipopt
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