
The SCIP Optimization Suite 10

https://scipopt.org

Mathieu Besançon, Suresh Bolusani, Antonia Chmiela, João Diońısio, Johannes Ehls, Mo-

hammed Ghannam, Ambros Gleixner, Adrian Göß, Alexander Hoen, Christopher Hojny, Jacob

von Holly-Ponientzietz, Rolf van der Hulst, Dominik Kamp, Thorsten Koch, Jurgen Lentz,

Stephen J. Maher, Julian Manns, Paul M. Meinhold, Gioni Mexi, Til Mohr, Erik Mühmer,

Krunal K. Patel, Marc E. Pfetsch, Felipe Serrano, Yuji Shinano, Mark Turner, Stefan Vigerske,

Matthias Walter, Dieter Weninger, Liding Xu

EURO 2025 · Leeds, UK · June 23, 2025

https://scipopt.org

Outline

This talk has been split into two parts:

The SCIP Optimization Suite︸ ︷︷ ︸
Part 1

10︸︷︷︸
Part 2

The SCIP Optimization Suite

SCIP: Solving Constraint Integer Programs

• a framework for constraint integer
programming, incorporating features from

• MILP (cutting planes, LP relaxation)

• CP (domain propagation)

• SAT (conflict analysis, restarts)

• MINLP (spatial branch-and-bound, NLPs)

• a branch-cut-and-price framework

• includes full-scale solvers for MILP, MINLP,

and Pseudo-Boolean optimization (→ WB-43)

• and much more: Benders decomp., exact MILP,

IIS, MILP reoptimization, concurrent solving,

cumulative and logical constraints, . . .

• a platform for researchers to implement and
test own methods in a general-purpose solver

• plugin-based structure

• basis for specialized extensions (GCG,

SCIP-SDP, SCIP-Jack, QuBowl, . . .)

• available open-source (Apache 2.0 license)

• readable code

CP

CIP

FD

MINLP

PBO

MIP

SATNLP

SCIP: Solving Constraint Integer Programs

• a framework for constraint integer
programming, incorporating features from

• MILP (cutting planes, LP relaxation)

• CP (domain propagation)

• SAT (conflict analysis, restarts)

• MINLP (spatial branch-and-bound, NLPs)

• a branch-cut-and-price framework

• includes full-scale solvers for MILP, MINLP,

and Pseudo-Boolean optimization (→ WB-43)

• and much more: Benders decomp., exact MILP,

IIS, MILP reoptimization, concurrent solving,

cumulative and logical constraints, . . .

• a platform for researchers to implement and
test own methods in a general-purpose solver

• plugin-based structure

• basis for specialized extensions (GCG,

SCIP-SDP, SCIP-Jack, QuBowl, . . .)

• available open-source (Apache 2.0 license)

• readable code

CP

CIP

FD

MINLP

PBO

MIP

SATNLP

SCIP: Solving Constraint Integer Programs

• a framework for constraint integer
programming, incorporating features from

• MILP (cutting planes, LP relaxation)

• CP (domain propagation)

• SAT (conflict analysis, restarts)

• MINLP (spatial branch-and-bound, NLPs)

• a branch-cut-and-price framework

• includes full-scale solvers for MILP, MINLP,

and Pseudo-Boolean optimization (→ WB-43)

• and much more: Benders decomp., exact MILP,

IIS, MILP reoptimization, concurrent solving,

cumulative and logical constraints, . . .

• a platform for researchers to implement and
test own methods in a general-purpose solver

• plugin-based structure

• basis for specialized extensions (GCG,

SCIP-SDP, SCIP-Jack, QuBowl, . . .)

• available open-source (Apache 2.0 license)

• readable code

CP

CIP

FD

MINLP

PBO

MIP

SATNLP

SCIP plugins

Generic MILP solver with automatic structure detection, Dantzig-Wolfe, and Benders

Decomposition.

SCIP Primal
Heuristic

actcons
diving

adaptive
diving

alns bound

clique
coef

diving

complete
sol

conflict
diving

cross
over

dins

dist.
diving

dks

dps

dualval

farkas
diving

feaspump

fixand
infer

fracdiving

gins

guided
diving

indicator

indicator
diving

intdiving

int
shifting

linesearch
diving

local
branching

locks

lpface

mpec

multistart

mutation
nlp

diving

objpscost
diving

octane

ofins

oneopt

padm

proximity

pscost
diving

random
rounding

rens

reopt
sols

repair

rins

rootsol
diving

rounding

scheduler

shift&
prop

shifting

simple
rounding

subnlp

trivial

trivial
negation

trust
region

twoopt

under
covervbound

veclen
diving

zero
objective

zi round

Expr.
Interpr.

CppAD

Event

estim

global
bnd

shadow
tree

soft
timelim

solve
phase

Separator

aggre
gation

cgmip

clique

close
cuts

convex
proj

disju
nctive eccuts

eccuts

gomory

implied
bounds

inter
minor

intobj

lagro
mory

mcf

minor

mixingmulti
linear

odd
cycle

rapid
learn

rlt

zero
half

Bandit

eps
greedy

exp3
exp3ix

ucb

Reader

bnd

ccg

cip

cnf
dec

diff

fix

fzn

gmslp

mps

mst

nl

opb

osil

pbm
pip

ppm

rlp

smps

sol wbo

zpl

IIS
Finder

greedy

LPI

clpcpx

glop

grb

highs

msk

qso spx

xprs

NLPI

all

filter
sqp

ipopt

worhp

Branch

allfull
strong

cloud

distrib

full
strong

gomoryinfer
ence

leastinf

look
ahead

mostinf

mult
aggr

node
reopt

pscost

random relps
cost

vanilla
full

strong

Node
selector

bfs

breadth
first

dfs

esti
matehybrid

estim

restart
dfs

uct

Tree
Compr.

largest
repr

weak
compr

Constraint
Handler

and

benders
benderslp

bound
disjunc.

card
inality

comp
onents

conjunc
tion

count
sols

cumu
lative

disjunc
tion

exact
linear

exact
sol

fixed
var

indi
cator

integral

knap
sack

linear

linking

logicor

non
linear

Nonlin.
Handler

bilinear

concave

convex

default

persp
ective

quad
ratic

quotient

signom
ial

or

orbi
sack

orbi
tope*

pseudo
boolean

setppc
sos1

sos2

super
indicator

sym
resack

var
bound

xor

Concur.
Solver

scip

Cut
Select.

dynamic

ensem
ble

hybrid

Presolver

bound
shift

convert
int domcol

dual
agg

dual
comp

dual
infer

dual
sparsify

gate
extract

implics

implintintto
binary

milp

qpkktref

redvub

sparsify

stuffing

trivial

tworow
bnd

Relax

benders

Benders
cut

feas

feasalt

int

nogood

opt

Benders

default

Propa
gator

dualfix

gen
vbound

nlobbt

obbt

probing

pseudo
obj

redcost

root
redcost

symmetry

vbound

Pricer

Expr.
Handler

abs

cos

entropy

exp

log

powerproduct

sign
power

sin

sum

value

var

Display

GCG: Generic Column Generation

Generic MILP solver with automatic structure detection, Dantzig-Wolfe, and Benders

Decomposition.

SCIP Primal
Heuristic

actcons
diving

adaptive
diving

alns bound

clique
coef

diving

complete
sol

conflict
diving

cross
over

dins

dist.
diving

dks

dps

dualval

farkas
diving

feaspump

fixand
infer

fracdiving

gins

guided
diving

indicator

indicator
diving

intdiving

int
shifting

linesearch
diving

local
branching

locks

lpface

mpec

multistart

mutation
nlp

diving

objpscost
diving

octane

ofins

oneopt

padm

proximity

pscost
diving

random
rounding

rens

reopt
sols

repair

rins

rootsol
diving

rounding

scheduler

shift&
prop

shifting

simple
rounding

subnlp

trivial

trivial
negation

trust
region

twoopt

under
covervbound

veclen
diving

zero
objective

zi round

gcg
coef

diving

gcg
dins

gcg
feas

pump

gcg
frac

diving

gcg
guided
diving

gcg
lines
diving

gcg
pscost
diving

gcg
rens

gcg
rins

gcg
round

gcg
shift

gcg
simple
round

gcg
veclen
diving

gcg
zi

round

greedy
colset

ip
colgen

master
coef

diving

master
diving

master
frac

diving

master
lines
diving

master
veclen
diving

orig
diving

relax
colset

rest
master

set
cover

xp
cross
over xp

rins

Expr.
Interpr.

CppAD

Event

estim

global
bnd

shadow
tree

soft
timelim

solve
phase

bestsol

display

master
sol

relax
sol

solving
stats

Separator

aggre
gation

cgmip

clique

close
cuts

convex
proj

disju
nctive eccuts

eccuts

gomory

implied
bounds

inter
minor

intobj

lagro
mory

mcf

minor

mixingmulti
linear

odd
cycle

rapid
learn

rlt

zero
half

basis

original

Bandit

eps
greedy

exp3
exp3ix

ucb

Reader

bnd

ccg

cip

cnf
dec

diff

fix

fzn

gmslp

mps

mst

nl

opb

osil

pbm
pip

ppm

rlp

smps

sol wbo

zpl

blk

cls

dec

gp

jdec

ref

tex

IIS
Finder

greedy

LPI

clpcpx

glop

grb

highs

msk

qso spx

xprs

NLPI

all

filter
sqp

ipopt

worhp

Branch

allfull
strong

cloud

distrib

full
strong

gomoryinfer
ence

leastinf

look
ahead

mostinf

mult
aggr

node
reopt

pscost

random relps
cost

vanilla
full

strong

bpstrong

compbnd
empty

generic

orig

relps
prob

ryan
foster

Node
selector

bfs

breadth
first

dfs

esti
matehybrid

estim

restart
dfs

uct

master

Tree
Compr.

largest
repr

weak
compr

Constraint
Handler

and

benders
benderslp

bound
disjunc.

card
inality

comp
onents

conjunc
tion

count
sols

cumu
lative

disjunc
tion

exact
linear

exact
sol

fixed
var

indi
cator

integral

knap
sack

linear

linking

logicor

non
linear

Nonlin.
Handler

bilinear

concave

convex

default

persp
ective

quad
ratic

quotient

signom
ial

or

orbi
sack

orbi
tope*

pseudo
boolean

setppc
sos1

sos2

super
indicator

sym
resack

var
bound

xor

decomp

integral
orig

master
branch

orig
branch

Concur.
Solver

scip

Cut
Select.

dynamic

ensem
ble

hybrid

Presolver

bound
shift

convert
int domcol

dual
agg

dual
comp

dual
infer

dual
sparsify

gate
extract

implics

implintintto
binary

milp

qpkktref

redvub

sparsify

stuffing

trivial

tworow
bnd

round
bound

Relax

benders
gcg

Benders
cut

feas

feasalt

int

nogood

opt

Benders

default

gcg

Propa
gator

dualfix

gen
vbound

nlobbt

obbt

probing

pseudo
obj

redcost

root
redcost

symmetry

vbound

Pricer

gcg

Expr.
Handler

abs

cos

entropy

exp

log

powerproduct

sign
power

sin

sum

value

var

Display

Detector

cons
type

post
process

cons
class

dense
master
conss

neigh.
master

stair
heur

stair
case
lsp

dbscan

mst
comp
greedy

master
setcover

master
setpackmaster

setpart

hcg
part
ition

hrg
part
ition

hrcg
part
ition

conn
ected
base

conn
ected
nonlv

general
master
setpack

general
master
setpart

general
master
setcover

var
class

iso
morph

Score

bender border

classic

fawh

forswh

max
white

spfawhspfwh

strong
decomp

Variable
Classifier

gams
domain

gams
symbol

scip
var

types

obj
valuesobj

value
signs

Cons.
Classifier

nnz

scip
cons
types

miplib
cons
types

cons
name
levens.

forcons
names
d.f.i.

gams
domain

gams
symbol

PaPILO: Parallel Presolve for Integer and Linear Optimization

An independent library for presolving MILPs in parallel and with arbitrary precision.

.lp

.mps

.opb

Presolve Core⟨REAL⟩

Transaction Store

C
liq
ue
M
er
gi
ng

C
oe
ffi
ci
en
tS
tr
en
gt
he
ni
ng

C
on
st
ra
in
tP
ro
pa
ga
ti
on

D
om

in
at
ed
C
ol
s

D
ua
lF
ix

D
ua
lIn
fe
r

F
ix
C
on
ti
nu
ou
s

Fr
ee
V
ar
S
ub
st
it
ut
io
n

Im
pl
In
tD
et
ec
ti
on

P
ar
al
le
lC
ol
D
et
ec
ti
on

P
ar
al
le
lR
ow

D
et
ec
ti
on

P
ro
bi
ng

S
im
pl
eP
ro
bi
ng

S
im
pl
eS
ub
st
it
ut
io
n

S
im
pl
ify
In
eq
ua
lit
ie
s

S
in
gl
et
on
C
ol
s

S
in
gl
et
on
S
tu
ffi
ng

S
pa
rs
ify

VeriPB

certificate

Solve

So
Plex

⌊SAT⌉

Postsolve⟨REAL⟩ .sol

everything everywhere all at once⟨REAL⟩

UG: Ubiquity Generator

Parallelization framework for solvers doing tree-search or

other parallelizable tasks.

• distributed and shared memory environments

• normal and racing ramp-up, checkpointing

• more from Yuji in WB-43

The Load
Coordinator

Base Solver

. . .

Commu-
nication
Library

MPI

pthread

C++11
thread

SoPlex, ZIMPL

SoPlex: Sequential object-oriented simPlex

• Simplex LP solver

• high precision and exact solving

• iterative refinement

ZIMPL: Zuse Institute Mathematical Programming

Language

• Algebraic modeling language in the style of AMPL

• rational arithmetic

SoPlex, ZIMPL

SoPlex: Sequential object-oriented simPlex

• Simplex LP solver

• high precision and exact solving

• iterative refinement

ZIMPL: Zuse Institute Mathematical Programming

Language

• Algebraic modeling language in the style of AMPL

• rational arithmetic

SCIP Optimization Suite Ecosystem https://github.com/scipopt

Specialized
Solvers

SCIP-SDP

SCIP-Jack

PolySCIP

. . .

Verification

vipr

Binary
Distribution

Development
Tools

Rubberband
+ ipet

MIP-DD

Interfaces

PySCIPOpt

PyGCGOpt

PySoPlex

russcip

soplex-rs

JSCIPOpt

SCIP.jl

SoPlex.jl

PaPILO.jl

SCIP++

Matlab

https://github.com/scipopt

SCIP Optimization Suite Ecosystem https://github.com/scipopt

Specialized
Solvers

SCIP-SDP

SCIP-Jack

PolySCIP

. . .

Verification

vipr

Binary
Distribution

Development
Tools

Rubberband
+ ipet

MIP-DD

Interfaces

PySCIPOpt

PyGCGOpt

PySoPlex

russcip

soplex-rs

JSCIPOpt

SCIP.jl

SoPlex.jl

PaPILO.jl

SCIP++

Matlab

https://github.com/scipopt

SCIP Optimization Suite Ecosystem https://github.com/scipopt

Specialized
Solvers

SCIP-SDP

SCIP-Jack

PolySCIP

. . .

Verification

vipr

Binary
Distribution

Development
Tools

Rubberband
+ ipet

MIP-DD

Interfaces

PySCIPOpt

PyGCGOpt

PySoPlex

russcip

soplex-rs

JSCIPOpt

SCIP.jl

SoPlex.jl

PaPILO.jl

SCIP++

Matlab

https://github.com/scipopt

SCIP Optimization Suite Ecosystem https://github.com/scipopt

Specialized
Solvers

SCIP-SDP

SCIP-Jack

PolySCIP

. . .

Verification

vipr

Binary
Distribution

Development
Tools

Rubberband
+ ipet

MIP-DD

Interfaces

PySCIPOpt

PyGCGOpt

PySoPlex

russcip

soplex-rs

JSCIPOpt

SCIP.jl

SoPlex.jl

PaPILO.jl

SCIP++

Matlab

https://github.com/scipopt

SCIP Optimization Suite Ecosystem https://github.com/scipopt

Specialized
Solvers

SCIP-SDP

SCIP-Jack

PolySCIP

. . .

Verification

vipr

Binary
Distribution

Development
Tools

Rubberband
+ ipet

MIP-DD

Interfaces

PySCIPOpt

PyGCGOpt

PySoPlex

russcip

soplex-rs

JSCIPOpt

SCIP.jl

SoPlex.jl

PaPILO.jl

SCIP++

Matlab

https://github.com/scipopt

SCIP Optimization Suite Ecosystem https://github.com/scipopt

Specialized
Solvers

SCIP-SDP

SCIP-Jack

PolySCIP

. . .

Verification

vipr

Binary
Distribution

Development
Tools

Rubberband
+ ipet

MIP-DD

Interfaces

PySCIPOpt

PyGCGOpt

PySoPlex

russcip

soplex-rs

JSCIPOpt

SCIP.jl

SoPlex.jl

PaPILO.jl

SCIP++

Matlab

https://github.com/scipopt

10

Exact MILP Solving [Eifler, Gleixner 2023, 2024]

SCIP can now solve mixed-integer linear programs over Q
exactly: no rounding errors, zero tolerances

• relies on GMP, MPFR, and Boost

• exact reading of MPS, LP, CIP, OPB/WBO, and ZIMPL

• new constraint handler for linear constraints in rational numbers

• exact presolve in rational arithmetic via PaPILO

• exact LP relaxation, that can be solved with SoPlex or QSopt ex

• cheaper numerically safe dual bounding techniques that post-process

floating-point LP solves (bound shift, project-and-shift)

• LP infeasibility analysis (Farkas proof) with safe rounding

• domain propagation on linear constraints with safe rounding

• Gomory mixed-integer cuts with safe rounding

• post-processing solutions from primal heuristics

• reliability pseudo-cost branching

• other separators disabled, symmetry handling disabled, etc

• log deductions in solving process (without presolve) for verification with VIPR

• MIP-DD supports exact MILP, too

Exact MILP Solving [Eifler, Gleixner 2023, 2024]

SCIP can now solve mixed-integer linear programs over Q
exactly: no rounding errors, zero tolerances

• relies on GMP, MPFR, and Boost

• exact reading of MPS, LP, CIP, OPB/WBO, and ZIMPL

• new constraint handler for linear constraints in rational numbers

• exact presolve in rational arithmetic via PaPILO

• exact LP relaxation, that can be solved with SoPlex or QSopt ex

• cheaper numerically safe dual bounding techniques that post-process

floating-point LP solves (bound shift, project-and-shift)

• LP infeasibility analysis (Farkas proof) with safe rounding

• domain propagation on linear constraints with safe rounding

• Gomory mixed-integer cuts with safe rounding

• post-processing solutions from primal heuristics

• reliability pseudo-cost branching

• other separators disabled, symmetry handling disabled, etc

• log deductions in solving process (without presolve) for verification with VIPR

• MIP-DD supports exact MILP, too

Exact MILP Solving [Eifler, Gleixner 2023, 2024]

SCIP can now solve mixed-integer linear programs over Q
exactly: no rounding errors, zero tolerances

• relies on GMP, MPFR, and Boost

• exact reading of MPS, LP, CIP, OPB/WBO, and ZIMPL

• new constraint handler for linear constraints in rational numbers

• exact presolve in rational arithmetic via PaPILO

• exact LP relaxation, that can be solved with SoPlex or QSopt ex

• cheaper numerically safe dual bounding techniques that post-process

floating-point LP solves (bound shift, project-and-shift)

• LP infeasibility analysis (Farkas proof) with safe rounding

• domain propagation on linear constraints with safe rounding

• Gomory mixed-integer cuts with safe rounding

• post-processing solutions from primal heuristics

• reliability pseudo-cost branching

• other separators disabled, symmetry handling disabled, etc

• log deductions in solving process (without presolve) for verification with VIPR

• MIP-DD supports exact MILP, too

Exact MILP Solving [Eifler, Gleixner 2023, 2024]

SCIP can now solve mixed-integer linear programs over Q
exactly: no rounding errors, zero tolerances

• relies on GMP, MPFR, and Boost

• exact reading of MPS, LP, CIP, OPB/WBO, and ZIMPL

• new constraint handler for linear constraints in rational numbers

• exact presolve in rational arithmetic via PaPILO

• exact LP relaxation, that can be solved with SoPlex or QSopt ex

• cheaper numerically safe dual bounding techniques that post-process

floating-point LP solves (bound shift, project-and-shift)

• LP infeasibility analysis (Farkas proof) with safe rounding

• domain propagation on linear constraints with safe rounding

• Gomory mixed-integer cuts with safe rounding

• post-processing solutions from primal heuristics

• reliability pseudo-cost branching

• other separators disabled, symmetry handling disabled, etc

• log deductions in solving process (without presolve) for verification with VIPR

• MIP-DD supports exact MILP, too

Exact MILP Solving [Eifler, Gleixner 2023, 2024]

SCIP can now solve mixed-integer linear programs over Q
exactly: no rounding errors, zero tolerances

• relies on GMP, MPFR, and Boost

• exact reading of MPS, LP, CIP, OPB/WBO, and ZIMPL

• new constraint handler for linear constraints in rational numbers

• exact presolve in rational arithmetic via PaPILO

• exact LP relaxation, that can be solved with SoPlex or QSopt ex

• cheaper numerically safe dual bounding techniques that post-process

floating-point LP solves (bound shift, project-and-shift)

• LP infeasibility analysis (Farkas proof) with safe rounding

• domain propagation on linear constraints with safe rounding

• Gomory mixed-integer cuts with safe rounding

• post-processing solutions from primal heuristics

• reliability pseudo-cost branching

• other separators disabled, symmetry handling disabled, etc

• log deductions in solving process (without presolve) for verification with VIPR

• MIP-DD supports exact MILP, too

Exact MILP Solving [Eifler, Gleixner 2023, 2024]

SCIP can now solve mixed-integer linear programs over Q
exactly: no rounding errors, zero tolerances

• relies on GMP, MPFR, and Boost

• exact reading of MPS, LP, CIP, OPB/WBO, and ZIMPL

• new constraint handler for linear constraints in rational numbers

• exact presolve in rational arithmetic via PaPILO

• exact LP relaxation, that can be solved with SoPlex or QSopt ex

• cheaper numerically safe dual bounding techniques that post-process

floating-point LP solves (bound shift, project-and-shift)

• LP infeasibility analysis (Farkas proof) with safe rounding

• domain propagation on linear constraints with safe rounding

• Gomory mixed-integer cuts with safe rounding

• post-processing solutions from primal heuristics

• reliability pseudo-cost branching

• other separators disabled, symmetry handling disabled, etc

• log deductions in solving process (without presolve) for verification with VIPR

• MIP-DD supports exact MILP, too

Exact MILP Solving [Eifler, Gleixner 2023, 2024]

SCIP can now solve mixed-integer linear programs over Q
exactly: no rounding errors, zero tolerances

• relies on GMP, MPFR, and Boost

• exact reading of MPS, LP, CIP, OPB/WBO, and ZIMPL

• new constraint handler for linear constraints in rational numbers

• exact presolve in rational arithmetic via PaPILO

• exact LP relaxation, that can be solved with SoPlex or QSopt ex

• cheaper numerically safe dual bounding techniques that post-process

floating-point LP solves (bound shift, project-and-shift)

• LP infeasibility analysis (Farkas proof) with safe rounding

• domain propagation on linear constraints with safe rounding

• Gomory mixed-integer cuts with safe rounding

• post-processing solutions from primal heuristics

• reliability pseudo-cost branching

• other separators disabled, symmetry handling disabled, etc

• log deductions in solving process (without presolve) for verification with VIPR

• MIP-DD supports exact MILP, too

Exact MILP Solving [Eifler, Gleixner 2023, 2024]

SCIP can now solve mixed-integer linear programs over Q
exactly: no rounding errors, zero tolerances

• relies on GMP, MPFR, and Boost

• exact reading of MPS, LP, CIP, OPB/WBO, and ZIMPL

• new constraint handler for linear constraints in rational numbers

• exact presolve in rational arithmetic via PaPILO

• exact LP relaxation, that can be solved with SoPlex or QSopt ex

• cheaper numerically safe dual bounding techniques that post-process

floating-point LP solves (bound shift, project-and-shift)

• LP infeasibility analysis (Farkas proof) with safe rounding

• domain propagation on linear constraints with safe rounding

• Gomory mixed-integer cuts with safe rounding

• post-processing solutions from primal heuristics

• reliability pseudo-cost branching

• other separators disabled, symmetry handling disabled, etc

• log deductions in solving process (without presolve) for verification with VIPR

• MIP-DD supports exact MILP, too

Exact MILP Solving [Eifler, Gleixner 2023, 2024]

SCIP can now solve mixed-integer linear programs over Q
exactly: no rounding errors, zero tolerances

• relies on GMP, MPFR, and Boost

• exact reading of MPS, LP, CIP, OPB/WBO, and ZIMPL

• new constraint handler for linear constraints in rational numbers

• exact presolve in rational arithmetic via PaPILO

• exact LP relaxation, that can be solved with SoPlex or QSopt ex

• cheaper numerically safe dual bounding techniques that post-process

floating-point LP solves (bound shift, project-and-shift)

• LP infeasibility analysis (Farkas proof) with safe rounding

• domain propagation on linear constraints with safe rounding

• Gomory mixed-integer cuts with safe rounding

• post-processing solutions from primal heuristics

• reliability pseudo-cost branching

• other separators disabled, symmetry handling disabled, etc

• log deductions in solving process (without presolve) for verification with VIPR

• MIP-DD supports exact MILP, too

Exact MILP Solving [Eifler, Gleixner 2023, 2024]

SCIP can now solve mixed-integer linear programs over Q
exactly: no rounding errors, zero tolerances

• relies on GMP, MPFR, and Boost

• exact reading of MPS, LP, CIP, OPB/WBO, and ZIMPL

• new constraint handler for linear constraints in rational numbers

• exact presolve in rational arithmetic via PaPILO

• exact LP relaxation, that can be solved with SoPlex or QSopt ex

• cheaper numerically safe dual bounding techniques that post-process

floating-point LP solves (bound shift, project-and-shift)

• LP infeasibility analysis (Farkas proof) with safe rounding

• domain propagation on linear constraints with safe rounding

• Gomory mixed-integer cuts with safe rounding

• post-processing solutions from primal heuristics

• reliability pseudo-cost branching

• other separators disabled, symmetry handling disabled, etc

• log deductions in solving process (without presolve) for verification with VIPR

• MIP-DD supports exact MILP, too

Exact MILP Solving [Eifler, Gleixner 2023, 2024]

SCIP can now solve mixed-integer linear programs over Q
exactly: no rounding errors, zero tolerances

• relies on GMP, MPFR, and Boost

• exact reading of MPS, LP, CIP, OPB/WBO, and ZIMPL

• new constraint handler for linear constraints in rational numbers

• exact presolve in rational arithmetic via PaPILO

• exact LP relaxation, that can be solved with SoPlex or QSopt ex

• cheaper numerically safe dual bounding techniques that post-process

floating-point LP solves (bound shift, project-and-shift)

• LP infeasibility analysis (Farkas proof) with safe rounding

• domain propagation on linear constraints with safe rounding

• Gomory mixed-integer cuts with safe rounding

• post-processing solutions from primal heuristics

• reliability pseudo-cost branching

• other separators disabled, symmetry handling disabled, etc

• log deductions in solving process (without presolve) for verification with VIPR

• MIP-DD supports exact MILP, too

Exact MILP Solving [Eifler, Gleixner 2023, 2024]

SCIP can now solve mixed-integer linear programs over Q
exactly: no rounding errors, zero tolerances

• relies on GMP, MPFR, and Boost

• exact reading of MPS, LP, CIP, OPB/WBO, and ZIMPL

• new constraint handler for linear constraints in rational numbers

• exact presolve in rational arithmetic via PaPILO

• exact LP relaxation, that can be solved with SoPlex or QSopt ex

• cheaper numerically safe dual bounding techniques that post-process

floating-point LP solves (bound shift, project-and-shift)

• LP infeasibility analysis (Farkas proof) with safe rounding

• domain propagation on linear constraints with safe rounding

• Gomory mixed-integer cuts with safe rounding

• post-processing solutions from primal heuristics

• reliability pseudo-cost branching

• other separators disabled, symmetry handling disabled, etc

• log deductions in solving process (without presolve) for verification with VIPR

• MIP-DD supports exact MILP, too

Exact MILP Solving [Eifler, Gleixner 2023, 2024]

SCIP can now solve mixed-integer linear programs over Q
exactly: no rounding errors, zero tolerances

• relies on GMP, MPFR, and Boost

• exact reading of MPS, LP, CIP, OPB/WBO, and ZIMPL

• new constraint handler for linear constraints in rational numbers

• exact presolve in rational arithmetic via PaPILO

• exact LP relaxation, that can be solved with SoPlex or QSopt ex

• cheaper numerically safe dual bounding techniques that post-process

floating-point LP solves (bound shift, project-and-shift)

• LP infeasibility analysis (Farkas proof) with safe rounding

• domain propagation on linear constraints with safe rounding

• Gomory mixed-integer cuts with safe rounding

• post-processing solutions from primal heuristics

• reliability pseudo-cost branching

• other separators disabled, symmetry handling disabled, etc

• log deductions in solving process (without presolve) for verification with VIPR

• MIP-DD supports exact MILP, too

Exact MILP Solving: Performance

MIPLIB 2017 benchmark set, 3 random seeds, 2h time limit

• default SCIP (floating-point) solves 342 instance+seed combinations

• disable all features that are missing in exact SCIP → 235 solved

• exact SCIP solves 161

153 can be solved in any configuration; on these instance+seed:

• disabling SCIP features (floating-point mode) increases mean time by 89% and

mean nodes by 161%

• switching to exact mode increases time by 258% and nodes by 155% (in addition)

Exact MILP Solving: Performance

MIPLIB 2017 benchmark set, 3 random seeds, 2h time limit

• default SCIP (floating-point) solves 342 instance+seed combinations

• disable all features that are missing in exact SCIP → 235 solved

• exact SCIP solves 161

153 can be solved in any configuration; on these instance+seed:

• disabling SCIP features (floating-point mode) increases mean time by 89% and

mean nodes by 161%

• switching to exact mode increases time by 258% and nodes by 155% (in addition)

Exact MILP Solving: Performance

MIPLIB 2017 benchmark set, 3 random seeds, 2h time limit

• default SCIP (floating-point) solves 342 instance+seed combinations

• disable all features that are missing in exact SCIP → 235 solved

• exact SCIP solves 161

153 can be solved in any configuration; on these instance+seed:

• disabling SCIP features (floating-point mode) increases mean time by 89% and

mean nodes by 161%

• switching to exact mode increases time by 258% and nodes by 155% (in addition)

Exact MILP Solving: Performance

MIPLIB 2017 benchmark set, 3 random seeds, 2h time limit

• default SCIP (floating-point) solves 342 instance+seed combinations

• disable all features that are missing in exact SCIP → 235 solved

• exact SCIP solves 161

153 can be solved in any configuration; on these instance+seed:

• disabling SCIP features (floating-point mode) increases mean time by 89% and

mean nodes by 161%

• switching to exact mode increases time by 258% and nodes by 155% (in addition)

Exact MILP Solving: Performance

MIPLIB 2017 benchmark set, 3 random seeds, 2h time limit

• default SCIP (floating-point) solves 342 instance+seed combinations

• disable all features that are missing in exact SCIP → 235 solved

• exact SCIP solves 161

153 can be solved in any configuration; on these instance+seed:

• disabling SCIP features (floating-point mode) increases mean time by 89% and

mean nodes by 161%

• switching to exact mode increases time by 258% and nodes by 155% (in addition)

Exact MILP Solving: Performance

MIPLIB 2017 benchmark set, 3 random seeds, 2h time limit

• default SCIP (floating-point) solves 342 instance+seed combinations

• disable all features that are missing in exact SCIP → 235 solved

• exact SCIP solves 161

153 can be solved in any configuration; on these instance+seed:

• disabling SCIP features (floating-point mode) increases mean time by 89% and

mean nodes by 161%

• switching to exact mode increases time by 258% and nodes by 155% (in addition)

Presolve: Implicit Integral Variables

A variable is implicit integral, if constraints (and objective) imply that it takes an

integral value in any feasible (or any optimal, or at least one optimal) solution, e.g.,

• x + y = 0, x ∈ Z ⇒ y ∈ Z if feasible

• max y , s.t. x + y ≤ 0, x ∈ Z ⇒ y ∈ Z if optimal

Useful property for branching, cut strengthening, primal heuristics, domain

propagation, . . .

So far, SCIP’s presolve could detect implicit integrality for only one variable at a time.

Presolve: Implicit Integrality via TU matrices [van der Hulst, Walter 2024, 2025]

Now, whole sets of implicit integral variables can be detected:

• partition variables into (x , y , z) such that constraints take form

Ax +B y ≤ d with A, d integral, B totally unimodular1

E x +F z ≤ h

x ∈ Zn

• for any fixing x := x̄ , the polyhedron {y : By ≤ d − A x̄} is integral

⇒ y is implicit integral

• SCIP very fast detects (transposed) network matrices B, a large sub-class of

totally unimodular matrices

• implicit integrality now detected on 69% of MIPLIB2017 instances (SCIP 9: 20%)

• mean fraction of implicit integral variables increased from 3% to 19%

1every square submatrix has determinant -1, 0, or 1

Presolve: Implicit Integrality via TU matrices [van der Hulst, Walter 2024, 2025]

Now, whole sets of implicit integral variables can be detected:

• partition variables into (x , y , z) such that constraints take form

Ax +B y ≤ d with A, d integral, B totally unimodular1

E x +F z ≤ h

x ∈ Zn

• for any fixing x := x̄ , the polyhedron {y : By ≤ d − A x̄} is integral

⇒ y is implicit integral

• SCIP very fast detects (transposed) network matrices B, a large sub-class of

totally unimodular matrices

• implicit integrality now detected on 69% of MIPLIB2017 instances (SCIP 9: 20%)

• mean fraction of implicit integral variables increased from 3% to 19%

1every square submatrix has determinant -1, 0, or 1

Presolve: Implicit Integrality via TU matrices [van der Hulst, Walter 2024, 2025]

Now, whole sets of implicit integral variables can be detected:

• partition variables into (x , y , z) such that constraints take form

Ax +B y ≤ d with A, d integral, B totally unimodular1

E x +F z ≤ h

x ∈ Zn

• for any fixing x := x̄ , the polyhedron {y : By ≤ d − A x̄} is integral

⇒ y is implicit integral

• SCIP very fast detects (transposed) network matrices B, a large sub-class of

totally unimodular matrices

• implicit integrality now detected on 69% of MIPLIB2017 instances (SCIP 9: 20%)

• mean fraction of implicit integral variables increased from 3% to 19%

1every square submatrix has determinant -1, 0, or 1

Presolve: Implicit Integrality via TU matrices [van der Hulst, Walter 2024, 2025]

Now, whole sets of implicit integral variables can be detected:

• partition variables into (x , y , z) such that constraints take form

Ax +B y ≤ d with A, d integral, B totally unimodular1

E x +F z ≤ h

x ∈ Zn

• for any fixing x := x̄ , the polyhedron {y : By ≤ d − A x̄} is integral

⇒ y is implicit integral

• SCIP very fast detects (transposed) network matrices B, a large sub-class of

totally unimodular matrices

• implicit integrality now detected on 69% of MIPLIB2017 instances (SCIP 9: 20%)

• mean fraction of implicit integral variables increased from 3% to 19%

1every square submatrix has determinant -1, 0, or 1

Presolve: PaPILO updates

• PaPILO now licensed under Apache 2.0

• added clique merging

• faster column domination presolve by topological compression of domination arc

sets

SCIP: Reflection Symmetries [Hojny 2024]

• SCIP can detect permutation symmetries, i.e., map γ : Rn → Rn

with permutation π on {1, . . . , n} s.t.

γ(x) = (xπ−1(1), . . . , xπ−1(n))

and handle via SST cuts and orbitopal reduction (lex. order)

• now also reflection symmetries can be detected, i.e.,

ρ(x) = (s1xπ−1(1), . . . , snxπ−1(n)) for s ∈ {−1, 1}n

• translate variable domain to be centered at origin

• “duplicate” symmetry detection graph via negated variables and

coefficients

• good performance improvements on testsets of geometric

packing, kissing number, and energy minimization problems

• MIPLIB2017: reflection symmetries on 6% of instances; solve more instances, but

slowdown on average

• MINLPLib: only 6 instances, e.g., due to pre-existing symmetry breaking cons.

• symmetry detection now also for pseudo-boolean constraints

SCIP: Reflection Symmetries [Hojny 2024]

• SCIP can detect permutation symmetries, i.e., map γ : Rn → Rn

with permutation π on {1, . . . , n} s.t.

γ(x) = (xπ−1(1), . . . , xπ−1(n))

and handle via SST cuts and orbitopal reduction (lex. order)

• now also reflection symmetries can be detected, i.e.,

ρ(x) = (s1xπ−1(1), . . . , snxπ−1(n)) for s ∈ {−1, 1}n

• translate variable domain to be centered at origin

• “duplicate” symmetry detection graph via negated variables and

coefficients

• good performance improvements on testsets of geometric

packing, kissing number, and energy minimization problems

• MIPLIB2017: reflection symmetries on 6% of instances; solve more instances, but

slowdown on average

• MINLPLib: only 6 instances, e.g., due to pre-existing symmetry breaking cons.

• symmetry detection now also for pseudo-boolean constraints

SCIP: Reflection Symmetries [Hojny 2024]

• SCIP can detect permutation symmetries, i.e., map γ : Rn → Rn

with permutation π on {1, . . . , n} s.t.

γ(x) = (xπ−1(1), . . . , xπ−1(n))

and handle via SST cuts and orbitopal reduction (lex. order)

• now also reflection symmetries can be detected, i.e.,

ρ(x) = (s1xπ−1(1), . . . , snxπ−1(n)) for s ∈ {−1, 1}n

• translate variable domain to be centered at origin

• “duplicate” symmetry detection graph via negated variables and

coefficients

• good performance improvements on testsets of geometric

packing, kissing number, and energy minimization problems

• MIPLIB2017: reflection symmetries on 6% of instances; solve more instances, but

slowdown on average

• MINLPLib: only 6 instances, e.g., due to pre-existing symmetry breaking cons.

• symmetry detection now also for pseudo-boolean constraints

SCIP: Reflection Symmetries [Hojny 2024]

• SCIP can detect permutation symmetries, i.e., map γ : Rn → Rn

with permutation π on {1, . . . , n} s.t.

γ(x) = (xπ−1(1), . . . , xπ−1(n))

and handle via SST cuts and orbitopal reduction (lex. order)

• now also reflection symmetries can be detected, i.e.,

ρ(x) = (s1xπ−1(1), . . . , snxπ−1(n)) for s ∈ {−1, 1}n

• translate variable domain to be centered at origin

• “duplicate” symmetry detection graph via negated variables and

coefficients

• good performance improvements on testsets of geometric

packing, kissing number, and energy minimization problems

• MIPLIB2017: reflection symmetries on 6% of instances; solve more instances, but

slowdown on average

• MINLPLib: only 6 instances, e.g., due to pre-existing symmetry breaking cons.

• symmetry detection now also for pseudo-boolean constraints

SCIP: Reflection Symmetries [Hojny 2024]

• SCIP can detect permutation symmetries, i.e., map γ : Rn → Rn

with permutation π on {1, . . . , n} s.t.

γ(x) = (xπ−1(1), . . . , xπ−1(n))

and handle via SST cuts and orbitopal reduction (lex. order)

• now also reflection symmetries can be detected, i.e.,

ρ(x) = (s1xπ−1(1), . . . , snxπ−1(n)) for s ∈ {−1, 1}n

• translate variable domain to be centered at origin

• “duplicate” symmetry detection graph via negated variables and

coefficients

• good performance improvements on testsets of geometric

packing, kissing number, and energy minimization problems

• MIPLIB2017: reflection symmetries on 6% of instances; solve more instances, but

slowdown on average

• MINLPLib: only 6 instances, e.g., due to pre-existing symmetry breaking cons.

• symmetry detection now also for pseudo-boolean constraints

Separator: k-flower inequalities

Consider a binary product constraints

yf =
∏
v∈f

xv , xv ∈ {0, 1},

Assume k additional overlapping binary products

yei =
∏
v∈ei

xv , ei ∩ f ̸= ∅, i = 1, . . . , k.

The standard relaxation includes the cut

yf +
∑
v∈f

(1− xv) ≥ 1

Separator: k-flower inequalities

Consider a binary product constraints

yf =
∏
v∈f

xv , xv ∈ {0, 1},

Assume k additional overlapping binary products

yei =
∏
v∈ei

xv , ei ∩ f ̸= ∅, i = 1, . . . , k.

The standard relaxation for f includes the cut

yf +
∑
v∈f

(1− xv) ≥ 1

Separator: k-flower inequalities

Consider a binary product constraints

yf =
∏
v∈f

xv , xv ∈ {0, 1},

Assume k additional overlapping binary products

yei =
∏
v∈ei

xv , ei ∩ f ̸= ∅, i = 1, . . . , k.

Rewrite the standard cut for f as

yf +
k∑

i=1

∑
v∈f∩ei

(1− xv) +
∑

v∈f \∪k
i=1fi

(1− xv) ≥ 1

Separator: k-flower inequalities

Consider a binary product constraints

yf =
∏
v∈f

xv , xv ∈ {0, 1},

Assume k additional overlapping binary products

yei =
∏
v∈ei

xv , ei ∩ f ̸= ∅, i = 1, . . . , k.

Rewrite the standard cut for f as

yf +
k∑

i=1

∑
v∈f∩ei

(1− xv)︸ ︷︷ ︸
replace by 1−yei

+
∑

v∈f \∪k
i=1fi

(1− xv) ≥ 1

Separator: k-flower inequalities

Consider a binary product constraints

yf =
∏
v∈f

xv , xv ∈ {0, 1},

Assume k additional overlapping binary products

yei =
∏
v∈ei

xv , ei ∩ f ̸= ∅, i = 1, . . . , k.

The k-flower inequality is

yf +
k∑

i=1

(1− yei) +
∑

v∈f \∪k
i=1fi

(1− xv) ≥ 1

SCIP separates these inequalities efficiently for k = 1 and k = 2.

GCG: New Primal Heuristic IPColGen [Maher, Rönnberg 2023]

Large-Neighborhood-Search heuristic for set packing/partitioning/covering problems:

• Destroy-Repair:
• consider only columns active in current solution

• remove some of the these columns

• generate new columns to regain a feasible solution

• Specialized pricing scheme to repair feasibility:

min
(c,a)∈Aq

c +

γ

∑
i∈Ip

ūiai −

γ

∑
i∈I c

ūiai original pricing objective

, damped by γ ∈ [0, 1]

+
∑
i∈Îp1

Mai
packing cons. already filled by partial sol.

static big-M penalty

+
∑
i∈Îp0

βiai
packing cons. not filled by partial sol.

increase βi when column with ai = 1 found

−
∑
i∈Î c0

βiai
cover cons. not filled by partial sol.

increase βi when column with ai = 1 found

dynamic β penalties, initially zero

(partition = packing + covering)

• on 160 suitable MIPLIB2017 instances: 5% improvement in gap between optimal

value and primal bound

GCG: New Primal Heuristic IPColGen [Maher, Rönnberg 2023]

Large-Neighborhood-Search heuristic for set packing/partitioning/covering problems:

• Destroy-Repair:
• consider only columns active in current solution

• remove some of the these columns

• generate new columns to regain a feasible solution

• Specialized pricing scheme to repair feasibility:

min
(c,a)∈Aq

c +

γ

∑
i∈Ip

ūiai −

γ

∑
i∈I c

ūiai original pricing objective

, damped by γ ∈ [0, 1]

+
∑
i∈Îp1

Mai
packing cons. already filled by partial sol.

static big-M penalty

+
∑
i∈Îp0

βiai
packing cons. not filled by partial sol.

increase βi when column with ai = 1 found

−
∑
i∈Î c0

βiai
cover cons. not filled by partial sol.

increase βi when column with ai = 1 found

dynamic β penalties, initially zero

(partition = packing + covering)

• on 160 suitable MIPLIB2017 instances: 5% improvement in gap between optimal

value and primal bound

GCG: New Primal Heuristic IPColGen [Maher, Rönnberg 2023]

Large-Neighborhood-Search heuristic for set packing/partitioning/covering problems:

• Destroy-Repair:
• consider only columns active in current solution

• remove some of the these columns

• generate new columns to regain a feasible solution

• Specialized pricing scheme to repair feasibility:

min
(c,a)∈Aq

c +

γ

∑
i∈Ip

ūiai −

γ

∑
i∈I c

ūiai original pricing objective

, damped by γ ∈ [0, 1]

+
∑
i∈Îp1

Mai
packing cons. already filled by partial sol.

static big-M penalty

+
∑
i∈Îp0

βiai
packing cons. not filled by partial sol.

increase βi when column with ai = 1 found

−
∑
i∈Î c0

βiai
cover cons. not filled by partial sol.

increase βi when column with ai = 1 found

dynamic β penalties, initially zero

(partition = packing + covering)

• on 160 suitable MIPLIB2017 instances: 5% improvement in gap between optimal

value and primal bound

GCG: New Primal Heuristic IPColGen [Maher, Rönnberg 2023]

Large-Neighborhood-Search heuristic for set packing/partitioning/covering problems:

• Destroy-Repair:
• consider only columns active in current solution

• remove some of the these columns

• generate new columns to regain a feasible solution

• Specialized pricing scheme to repair feasibility:

min
(c,a)∈Aq

c +

γ

∑
i∈Ip

ūiai −

γ

∑
i∈I c

ūiai original pricing objective

, damped by γ ∈ [0, 1]

+
∑
i∈Îp1

Mai
packing cons. already filled by partial sol.

static big-M penalty

+
∑
i∈Îp0

βiai
packing cons. not filled by partial sol.

increase βi when column with ai = 1 found

−
∑
i∈Î c0

βiai
cover cons. not filled by partial sol.

increase βi when column with ai = 1 found

dynamic β penalties, initially zero

(partition = packing + covering)

• on 160 suitable MIPLIB2017 instances: 5% improvement in gap between optimal

value and primal bound

GCG: New Primal Heuristic IPColGen [Maher, Rönnberg 2023]

Large-Neighborhood-Search heuristic for set packing/partitioning/covering problems:

• Destroy-Repair:
• consider only columns active in current solution

• remove some of the these columns

• generate new columns to regain a feasible solution

• Specialized pricing scheme to repair feasibility:

min
(c,a)∈Aq

c +

γ

∑
i∈Ip

ūiai −

γ

∑
i∈I c

ūiai original pricing objective

, damped by γ ∈ [0, 1]

+
∑
i∈Îp1

Mai
packing cons. already filled by partial sol.

static big-M penalty

+
∑
i∈Îp0

βiai
packing cons. not filled by partial sol.

increase βi when column with ai = 1 found

−
∑
i∈Î c0

βiai
cover cons. not filled by partial sol.

increase βi when column with ai = 1 found

dynamic β penalties, initially zero (partition = packing + covering)

• on 160 suitable MIPLIB2017 instances: 5% improvement in gap between optimal

value and primal bound

GCG: New Primal Heuristic IPColGen [Maher, Rönnberg 2023]

Large-Neighborhood-Search heuristic for set packing/partitioning/covering problems:

• Destroy-Repair:
• consider only columns active in current solution

• remove some of the these columns

• generate new columns to regain a feasible solution

• Specialized pricing scheme to repair feasibility:

min
(c,a)∈Aq

c + γ
∑
i∈Ip

ūiai − γ
∑
i∈I c

ūiai original pricing objective, damped by γ ∈ [0, 1]

+
∑
i∈Îp1

Mai
packing cons. already filled by partial sol.

static big-M penalty

+
∑
i∈Îp0

βiai
packing cons. not filled by partial sol.

increase βi when column with ai = 1 found

−
∑
i∈Î c0

βiai
cover cons. not filled by partial sol.

increase βi when column with ai = 1 found

dynamic β penalties, initially zero (partition = packing + covering)

• on 160 suitable MIPLIB2017 instances: 5% improvement in gap between optimal

value and primal bound

GCG: New Primal Heuristic IPColGen [Maher, Rönnberg 2023]

Large-Neighborhood-Search heuristic for set packing/partitioning/covering problems:

• Destroy-Repair:
• consider only columns active in current solution

• remove some of the these columns

• generate new columns to regain a feasible solution

• Specialized pricing scheme to repair feasibility:

min
(c,a)∈Aq

c + γ
∑
i∈Ip

ūiai − γ
∑
i∈I c

ūiai original pricing objective, damped by γ ∈ [0, 1]

+
∑
i∈Îp1

Mai
packing cons. already filled by partial sol.

static big-M penalty

+
∑
i∈Îp0

βiai
packing cons. not filled by partial sol.

increase βi when column with ai = 1 found

−
∑
i∈Î c0

βiai
cover cons. not filled by partial sol.

increase βi when column with ai = 1 found

dynamic β penalties, initially zero (partition = packing + covering)

• on 160 suitable MIPLIB2017 instances: 5% improvement in gap between optimal

value and primal bound

SCIP: New Primal Heuristic Kernel Search [Halbig, Göß, Weninger 2023]

Based on Guastaroba, Savelsbergh, and Speranza (2017): Adaptive Kernel Search – A

heuristic for solving Mixed Integer linear Programs

• find suitable/promising variables to define

a Kernel, e.g., nonzero value in LP solution

• split remaining variables into buckets, e.g.,

by logarithm of reduced costs

• unite Kernel with each bucket to create several easier problems

• solve each “easy” problem after fixing all other variables

• update the Kernel after each solve by adding variables nonzero in last improving

solution

• additional adjustments if problem decomposition is available: ensure each bucket

contains variables from all blocks

SCIP: New Primal Heuristic Kernel Search [Halbig, Göß, Weninger 2023]

Based on Guastaroba, Savelsbergh, and Speranza (2017): Adaptive Kernel Search – A

heuristic for solving Mixed Integer linear Programs

• find suitable/promising variables to define

a Kernel, e.g., nonzero value in LP solution

• split remaining variables into buckets, e.g.,

by logarithm of reduced costs

• unite Kernel with each bucket to create several easier problems

• solve each “easy” problem after fixing all other variables

• update the Kernel after each solve by adding variables nonzero in last improving

solution

• additional adjustments if problem decomposition is available: ensure each bucket

contains variables from all blocks

SCIP: New Primal Heuristic Kernel Search [Halbig, Göß, Weninger 2023]

Based on Guastaroba, Savelsbergh, and Speranza (2017): Adaptive Kernel Search – A

heuristic for solving Mixed Integer linear Programs

• find suitable/promising variables to define

a Kernel, e.g., nonzero value in LP solution

• split remaining variables into buckets, e.g.,

by logarithm of reduced costs

• unite Kernel with each bucket to create several easier problems

• solve each “easy” problem after fixing all other variables

• update the Kernel after each solve by adding variables nonzero in last improving

solution

• additional adjustments if problem decomposition is available: ensure each bucket

contains variables from all blocks

SCIP: New Primal Heuristic Kernel Search [Halbig, Göß, Weninger 2023]

Based on Guastaroba, Savelsbergh, and Speranza (2017): Adaptive Kernel Search – A

heuristic for solving Mixed Integer linear Programs

• find suitable/promising variables to define

a Kernel, e.g., nonzero value in LP solution

• split remaining variables into buckets, e.g.,

by logarithm of reduced costs

• unite Kernel with each bucket to create several easier problems

• solve each “easy” problem after fixing all other variables

• update the Kernel after each solve by adding variables nonzero in last improving

solution

• additional adjustments if problem decomposition is available: ensure each bucket

contains variables from all blocks

SCIP: Cut-based Conflict Analysis

[Mexi, Serrano, Berthold, Gleixner, Nordström 2024]

Encountering an infeasible branch-and-bound node, conflict

analysis is about obtaining a constraint that would have

identified the infeasibility earlier.

• so far, SCIP could derive bound disjunctions∨
i{xi ≶ bi} (SAT-based approach) or use Farkas proof

from infeasible LP

• now, directly use the linear constraints that were

responsible for the bound tightenings that lead to

infeasibility

• a sequence of linear combinations, integer roundings,

and MIR cut generation to derive a cut that separates

the infeasible local domain

• more details in WB-43

SCIP: Cut-based Conflict Analysis

[Mexi, Serrano, Berthold, Gleixner, Nordström 2024]

Encountering an infeasible branch-and-bound node, conflict

analysis is about obtaining a constraint that would have

identified the infeasibility earlier.

• so far, SCIP could derive bound disjunctions∨
i{xi ≶ bi} (SAT-based approach) or use Farkas proof

from infeasible LP

• now, directly use the linear constraints that were

responsible for the bound tightenings that lead to

infeasibility

• a sequence of linear combinations, integer roundings,

and MIR cut generation to derive a cut that separates

the infeasible local domain

• more details in WB-43

Branching

SCIP: Probabilistic Lookahead Strong Branching

[Mexi, Shamsi, Besançon, le Bodic 2024]

• stop strong branching when expected tree size after evaluating one more

candidate is not smaller than the current tree size

SCIP: Ancestral Pseudocosts

• approximate longer-term influence of branching decisions

• include LP bound improvements from subsequent levels into pseudo-costs

SCIP: Mix Integer and Nonlinear Branching

• allow to branch on variable in nonconvex term before integrality constraints are

satisfied

GCG: Component Bound Branching

• branch entirely in reformulated problem, similar to Vanderbeck’s generic

branching scheme (2011), but less complex

Branching

SCIP: Probabilistic Lookahead Strong Branching

[Mexi, Shamsi, Besançon, le Bodic 2024]

• stop strong branching when expected tree size after evaluating one more

candidate is not smaller than the current tree size

SCIP: Ancestral Pseudocosts

• approximate longer-term influence of branching decisions

• include LP bound improvements from subsequent levels into pseudo-costs

SCIP: Mix Integer and Nonlinear Branching

• allow to branch on variable in nonconvex term before integrality constraints are

satisfied

GCG: Component Bound Branching

• branch entirely in reformulated problem, similar to Vanderbeck’s generic

branching scheme (2011), but less complex

Branching

SCIP: Probabilistic Lookahead Strong Branching

[Mexi, Shamsi, Besançon, le Bodic 2024]

• stop strong branching when expected tree size after evaluating one more

candidate is not smaller than the current tree size

SCIP: Ancestral Pseudocosts

• approximate longer-term influence of branching decisions

• include LP bound improvements from subsequent levels into pseudo-costs

SCIP: Mix Integer and Nonlinear Branching

• allow to branch on variable in nonconvex term before integrality constraints are

satisfied

GCG: Component Bound Branching

• branch entirely in reformulated problem, similar to Vanderbeck’s generic

branching scheme (2011), but less complex

Branching

SCIP: Probabilistic Lookahead Strong Branching

[Mexi, Shamsi, Besançon, le Bodic 2024]

• stop strong branching when expected tree size after evaluating one more

candidate is not smaller than the current tree size

SCIP: Ancestral Pseudocosts

• approximate longer-term influence of branching decisions

• include LP bound improvements from subsequent levels into pseudo-costs

SCIP: Mix Integer and Nonlinear Branching

• allow to branch on variable in nonconvex term before integrality constraints are

satisfied

GCG: Component Bound Branching

• branch entirely in reformulated problem, similar to Vanderbeck’s generic

branching scheme (2011), but less complex

Decomposition

More News from GCG:

• now licensed under Apache 2.0

• new JSON-based file format for decomposition: allows for nested decompositions

and symmetry info

• new pricing solvers: GCG (nested decomp.) and HiGHS

• easier addition of new constraint to master problem (“extended master

constraints”)

• decomposition scores are now plugins

Benders in SCIP:

• full solution can now be obtained if decomposition happens in SCIP

• allow for maxi θi instead of
∑

i θi objective function

• distinguish master and linking variables

Decomposition

More News from GCG:

• now licensed under Apache 2.0

• new JSON-based file format for decomposition: allows for nested decompositions

and symmetry info

• new pricing solvers: GCG (nested decomp.) and HiGHS

• easier addition of new constraint to master problem (“extended master

constraints”)

• decomposition scores are now plugins

Benders in SCIP:

• full solution can now be obtained if decomposition happens in SCIP

• allow for maxi θi instead of
∑

i θi objective function

• distinguish master and linking variables

Infeasibility Analysis

Irreducible Infeasible Subsystem

• a subset of the problem’s constraints and variable

bounds that cannot be satisfied jointly and that

becomes feasible if reducing further

• SCIP and MIP-DD can now compute IIS by greedy

algorithms, either building up from an empty problem

or reducing from the full problem

Infeasibility Analysis

Irreducible Infeasible Subsystem

• a subset of the problem’s constraints and variable

bounds that cannot be satisfied jointly and that

becomes feasible if reducing further

• SCIP and MIP-DD can now compute IIS by greedy

algorithms, either building up from an empty problem

or reducing from the full problem

Interfaces

PySCIPOpt:

• Matrix variables are now available, e.g.,

x = scip.addMatrixVar((2,2), vtype=’C’, name=’x’, ub=8)

scip.addMatrixCons(x + y <= z)

scip.addMatrixCons(x @ y <= x)

• built on NumPy, thus can use all standard NumPy ops (@, *, +, **, . . .)

• mix scalars, vectors, matrices with automatic NumPy broadcasting

russcip:

• separator and constraint handler access

• new methods to add cuts

SCIP.jl:

• event handler access

• MinUC computation

Interfaces

PySCIPOpt:

• Matrix variables are now available, e.g.,

x = scip.addMatrixVar((2,2), vtype=’C’, name=’x’, ub=8)

scip.addMatrixCons(x + y <= z)

scip.addMatrixCons(x @ y <= x)

• built on NumPy, thus can use all standard NumPy ops (@, *, +, **, . . .)

• mix scalars, vectors, matrices with automatic NumPy broadcasting

russcip:

• separator and constraint handler access

• new methods to add cuts

SCIP.jl:

• event handler access

• MinUC computation

Interfaces

PySCIPOpt:

• Matrix variables are now available, e.g.,

x = scip.addMatrixVar((2,2), vtype=’C’, name=’x’, ub=8)

scip.addMatrixCons(x + y <= z)

scip.addMatrixCons(x @ y <= x)

• built on NumPy, thus can use all standard NumPy ops (@, *, +, **, . . .)

• mix scalars, vectors, matrices with automatic NumPy broadcasting

russcip:

• separator and constraint handler access

• new methods to add cuts

SCIP.jl:

• event handler access

• MinUC computation

SCIP solving statistics

SCIP can prints hundreds of line of statistics on the solving process.

SCIP Status : solving was interrupted [gap limit reached]

Total Time : 0.64

solving : 0.63

presolving : 0.03 (included in solving)

reading : 0.01

copying : 0.01 (5 #copies) (minimal 0.00, maximal 0.00, average 0.00)

Original Problem :

Problem name : BELL5

Variables : 104 (30 binary, 28 integer, 46 continuous)

implied integral : 0 (0 binary, 0 integer, 0 continuous)

Constraints : 91 initial, 91 maximal

Objective : minimize, 74 non-zeros (abs.min = 0.1825, abs.max = 60000)

Presolved Problem :

Problem name : t_BELL5

Variables : 30 (2 binary, 11 integer, 17 continuous)

implied integral : 0 (0 binary, 0 integer, 0 continuous)

Constraints : 61 initial, 62 maximal

Objective : minimize, 28 non-zeros (abs.min = 1.41693, abs.max = 59000)

Nonzeros : 553 constraint, 0 clique table

Presolvers : ExecTime SetupTime Calls FixedVars AggrVars ChgTypes ChgBounds AddHoles DelCons AddCons ChgSides ChgCoefs

boundshift : 0.00 0.00 0 0 0 0 0 0 0 0 0 0

convertinttobin : 0.00 0.00 0 0 0 0 0 0 0 0 0 0

domcol : 0.00 0.00 5 1 0 0 0 0 0 0 0 0

dualagg : 0.00 0.00 0 0 0 0 0 0 0 0 0 0

dualcomp : 0.00 0.00 5 0 0 0 0 0 0 0 0 0

dualinfer : 0.00 0.00 0 0 0 0 0 0 0 0 0 0

dualsparsify : 0.00 0.00 1 0 0 0 0 0 0 0 0 0

gateextraction : 0.00 0.00 0 0 0 0 0 0 0 0 0 0

implics : 0.00 0.00 12 0 0 0 0 0 0 0 0 0

implint : 0.00 0.00 0 0 0 0 0 0 0 0 0 0

inttobinary : 0.00 0.00 49 0 2 2 0 0 0 0 0 0

milp : 0.00 0.00 4 4 2 0 15 0 0 0 0 0

qpkktref : 0.00 0.00 0 0 0 0 0 0 0 0 0 0

redvub : 0.00 0.00 0 0 0 0 0 0 0 0 0 0

sparsify : 0.00 0.00 2 0 0 0 0 0 0 0 0 0

stuffing : 0.00 0.00 0 0 0 0 0 0 0 0 0 0

trivial : 0.00 0.00 49 13 0 0 0 0 0 0 0 0

tworowbnd : 0.00 0.00 0 0 0 0 0 0 0 0 0 0

dualfix : 0.00 0.00 49 3 0 0 0 0 0 0 0 0

genvbounds : 0.00 0.00 0 0 0 0 0 0 0 0 0 0

probing : 0.00 0.00 2 3 0 0 4 0 0 0 0 0

pseudoobj : 0.00 0.00 8 0 0 0 6 0 0 0 0 0

symmetry : 0.00 0.00 1 0 0 0 0 0 0 0 0 0

vbounds : 0.00 0.00 4 0 0 0 0 0 0 0 0 0

varbound : 0.00 0.00 41 0 0 0 0 0 1 1 0 0

knapsack : 0.00 0.00 2 0 0 0 0 0 4 8 0 0

setppc : 0.00 0.00 34 0 4 0 0 0 16 0 0 0

linear : 0.00 0.00 57 2 20 0 208 0 45 0 3 32

bounddisjunction : 0.00 0.00 12 0 0 0 0 0 6 0 0 0

benders : 0.00 0.00 0 0 0 0 0 0 0 0 0 0

components : 0.03 0.00 3 22 0 0 0 0 18 0 0 0

root node : - - - 16 - - 136 - - - - -

Now this information is available via an API and JSON.
"origprob" : {

"description" : "original problem statistics table",

"num_binary_variables" : 30,

"num_continuous_variables" : 46,

"num_implied_binary_variables" : 0,

"num_implied_continuous_variables" : 0,

"num_implied_integer_variables" : 0,

"num_initial_constraints" : 91,

"num_integer_variables" : 28,

"num_maximal_constraints" : 91,

"num_variables" : 104,

"objective_abs_max" : 60000,

"objective_abs_min" : 0.1825,

"objective_non_zeros" : 74,

"objective_sense" : "minimize",

"problem_name" : "BELL5"

},

"presolvedprob" : {

"clique_table_nonzeros" : 0,

"constraint_nonzeros" : 539,

"description" : "presolved problem statistics table",

"num_binary_variables" : 2,

"num_continuous_variables" : 17,

"num_implied_binary_variables" : 0,

"num_implied_continuous_variables" : 0,

"num_implied_integer_variables" : 0,

"num_initial_constraints" : 60,

"num_integer_variables" : 10,

"num_maximal_constraints" : 61,

"num_variables" : 29,

"objective_abs_max" : 59000,

"objective_abs_min" : 1.41693,

"objective_non_zeros" : 27,

"objective_sense" : "minimize",

"problem_name" : "t_BELL5"

},

"presolver" : {

"description" : "presolver statistics table",

"plugins" : {

"SOS1" : {

"added_constraints" : 0,

"added_holes" : 0,

"aggregated_vars" : 0,

"changed_bounds" : 0,

"changed_coefficients" : 0,

"changed_sides" : 0,

"changed_var_types" : 0,

"deleted_constraints" : 0,

"description" : "SOS1 constraint handler",

"fixed_vars" : 0,

"presol_calls" : 0,

"presol_time" : 0,

"setup_time" : 3e-06

},

"SOS2" : {

"added_constraints" : 0,

"added_holes" : 0,

"aggregated_vars" : 0,

"changed_bounds" : 0,

SCIP solving statistics

SCIP can prints hundreds of line of statistics on the solving process.

SCIP Status : solving was interrupted [gap limit reached]

Total Time : 0.64

solving : 0.63

presolving : 0.03 (included in solving)

reading : 0.01

copying : 0.01 (5 #copies) (minimal 0.00, maximal 0.00, average 0.00)

Original Problem :

Problem name : BELL5

Variables : 104 (30 binary, 28 integer, 46 continuous)

implied integral : 0 (0 binary, 0 integer, 0 continuous)

Constraints : 91 initial, 91 maximal

Objective : minimize, 74 non-zeros (abs.min = 0.1825, abs.max = 60000)

Presolved Problem :

Problem name : t_BELL5

Variables : 30 (2 binary, 11 integer, 17 continuous)

implied integral : 0 (0 binary, 0 integer, 0 continuous)

Constraints : 61 initial, 62 maximal

Objective : minimize, 28 non-zeros (abs.min = 1.41693, abs.max = 59000)

Nonzeros : 553 constraint, 0 clique table

Presolvers : ExecTime SetupTime Calls FixedVars AggrVars ChgTypes ChgBounds AddHoles DelCons AddCons ChgSides ChgCoefs

boundshift : 0.00 0.00 0 0 0 0 0 0 0 0 0 0

convertinttobin : 0.00 0.00 0 0 0 0 0 0 0 0 0 0

domcol : 0.00 0.00 5 1 0 0 0 0 0 0 0 0

dualagg : 0.00 0.00 0 0 0 0 0 0 0 0 0 0

dualcomp : 0.00 0.00 5 0 0 0 0 0 0 0 0 0

dualinfer : 0.00 0.00 0 0 0 0 0 0 0 0 0 0

dualsparsify : 0.00 0.00 1 0 0 0 0 0 0 0 0 0

gateextraction : 0.00 0.00 0 0 0 0 0 0 0 0 0 0

implics : 0.00 0.00 12 0 0 0 0 0 0 0 0 0

implint : 0.00 0.00 0 0 0 0 0 0 0 0 0 0

inttobinary : 0.00 0.00 49 0 2 2 0 0 0 0 0 0

milp : 0.00 0.00 4 4 2 0 15 0 0 0 0 0

qpkktref : 0.00 0.00 0 0 0 0 0 0 0 0 0 0

redvub : 0.00 0.00 0 0 0 0 0 0 0 0 0 0

sparsify : 0.00 0.00 2 0 0 0 0 0 0 0 0 0

stuffing : 0.00 0.00 0 0 0 0 0 0 0 0 0 0

trivial : 0.00 0.00 49 13 0 0 0 0 0 0 0 0

tworowbnd : 0.00 0.00 0 0 0 0 0 0 0 0 0 0

dualfix : 0.00 0.00 49 3 0 0 0 0 0 0 0 0

genvbounds : 0.00 0.00 0 0 0 0 0 0 0 0 0 0

probing : 0.00 0.00 2 3 0 0 4 0 0 0 0 0

pseudoobj : 0.00 0.00 8 0 0 0 6 0 0 0 0 0

symmetry : 0.00 0.00 1 0 0 0 0 0 0 0 0 0

vbounds : 0.00 0.00 4 0 0 0 0 0 0 0 0 0

varbound : 0.00 0.00 41 0 0 0 0 0 1 1 0 0

knapsack : 0.00 0.00 2 0 0 0 0 0 4 8 0 0

setppc : 0.00 0.00 34 0 4 0 0 0 16 0 0 0

linear : 0.00 0.00 57 2 20 0 208 0 45 0 3 32

bounddisjunction : 0.00 0.00 12 0 0 0 0 0 6 0 0 0

benders : 0.00 0.00 0 0 0 0 0 0 0 0 0 0

components : 0.03 0.00 3 22 0 0 0 0 18 0 0 0

root node : - - - 16 - - 136 - - - - -

Now this information is available via an API and JSON.
"origprob" : {

"description" : "original problem statistics table",

"num_binary_variables" : 30,

"num_continuous_variables" : 46,

"num_implied_binary_variables" : 0,

"num_implied_continuous_variables" : 0,

"num_implied_integer_variables" : 0,

"num_initial_constraints" : 91,

"num_integer_variables" : 28,

"num_maximal_constraints" : 91,

"num_variables" : 104,

"objective_abs_max" : 60000,

"objective_abs_min" : 0.1825,

"objective_non_zeros" : 74,

"objective_sense" : "minimize",

"problem_name" : "BELL5"

},

"presolvedprob" : {

"clique_table_nonzeros" : 0,

"constraint_nonzeros" : 539,

"description" : "presolved problem statistics table",

"num_binary_variables" : 2,

"num_continuous_variables" : 17,

"num_implied_binary_variables" : 0,

"num_implied_continuous_variables" : 0,

"num_implied_integer_variables" : 0,

"num_initial_constraints" : 60,

"num_integer_variables" : 10,

"num_maximal_constraints" : 61,

"num_variables" : 29,

"objective_abs_max" : 59000,

"objective_abs_min" : 1.41693,

"objective_non_zeros" : 27,

"objective_sense" : "minimize",

"problem_name" : "t_BELL5"

},

"presolver" : {

"description" : "presolver statistics table",

"plugins" : {

"SOS1" : {

"added_constraints" : 0,

"added_holes" : 0,

"aggregated_vars" : 0,

"changed_bounds" : 0,

"changed_coefficients" : 0,

"changed_sides" : 0,

"changed_var_types" : 0,

"deleted_constraints" : 0,

"description" : "SOS1 constraint handler",

"fixed_vars" : 0,

"presol_calls" : 0,

"presol_time" : 0,

"setup_time" : 3e-06

},

"SOS2" : {

"added_constraints" : 0,

"added_holes" : 0,

"aggregated_vars" : 0,

"changed_bounds" : 0,

Availability

• SCIP Optimization Suite 10 should be released in the next months.

• Everything is already publicly available in the development branches (master or

develop) on https://github.com/scipopt.

• A release report with many details will be available again.

https://github.com/scipopt

Availability

• SCIP Optimization Suite 10 should be released in the next months.

• Everything is already publicly available in the development branches (master or

develop) on https://github.com/scipopt.

• A release report with many details will be available again.

https://github.com/scipopt

	The SCIP Optimization Suite
	!10

