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Summary. This paper focuses on the optimization of the design and operation of
combined heat and power plants (cogeneration plants). Due to the complexity of
such an optimization task, conventional optimization methods consider only one op-
eration point that is usually the full-load case. However, the frequent changes in de-
mand lead to operation in several partial-load conditions. To guarantee a technically
feasible and economically sound operation, we present a mathematical programming
formulation of a model that considers the partial-load operation already in the de-
sign phase of the plant. This leads to a nonconvex mixed-integer nonlinear program
(MINLP) due to discrete decisions in the design phase and discrete variables and
nonlinear equations describing the thermodynamic status and behavior of the plant.
The model is solved using an extended Branch and Cut algorithm that is imple-
mented in the solver LaGO. We describe conventional optimization approaches and
show that without consideration of different operation points, a flexible operation of
the plant may be impossible. Further, we address the problem associated with the
uncertain cost functions for plant components.
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1.1 Introduction

In deregulated energy markets the optimization of the design and operation
of energy conversion plants becomes increasingly important. To reduce the
product cost during the entire operation time of a plant, both selection of
an optimal plant structure and selection of optimal operating parameters in
different load situations are necessary. Several design optimization methods
were developed and applied to energy conversion systems in the past, e.g.,
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exergoeconomic methods [8,16,36,47,54–57], evolutionary algorithms [3,7,12,
13, 49], and mathematical programming methods [3–5,14, 50].

All these approaches are based on deterministic models. Thus, the effect
of data uncertainties is not considered. In this case, the optimization could
lead to a solution that is not feasible when some variations in the data apply.
Often, heuristics are used to adapt the solution to a new situation. However,
guarantees on the quality of the so obtained solution with respect to optimality
are in general not available.

We consider two sources of uncertainty in this work: The first one is caused
by frequently changing operating conditions while the second one is associated
with the cost model. Due to the volatility of demand (see Figure 1.1 for a
typical load curve of a power plant), the plant operators are forced to operate
a plant at operation points away from the usual design point, the full-load
case. This effect is further reinforced by discontinuous and unsteady energy
supplies from renewable energy sources such as wind energy (e.g., [17,19,34]).
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Fig. 1.1. Typical load diagram of a cogeneration plant.

An important observation is, that the consideration of partial-load opera-
tion points already in the design phase is not only meaningful for economical
reasons, but also necessary to actually ensure a feasible plant operation un-
der different partial-load conditions. This becomes even more important for
cogeneration power plants, since here different amounts of each product can
be requested at each time. So far only few approaches exist that could con-
sider the partial-load operation within the design optimization, e.g., [23,36,37].
These approaches require in practical applications strong simplifications, such
as a high linearity of the resulting problem. To handle the discrete decisions
that are necessary to model different structures of a plant, often heuristic
approaches such as genetic algorithms are applied.

Other approaches deal with the application of MINLP-techniques for the
optimization of small-scale combined heat and power plants with fixed pres-
sures and thus simplified working fluid properties within the cycle considering
again only one operation point [50]. For the optimization of the operation of an
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existing plant with strong simplifications in the turbine models and the per-
formance of heat exchangers also MINLP-techniques were applied [46]. First
steps towards the design optimization of power plants with consideration of
their partial-load performance are discussed in [30].

The cost model is another important cause of uncertainty. A detailed
knowledge of the required investment costs and of the development of interest
rates and fuel prices in the future is necessary to calculate the objective func-
tion of the optimization problem, here the levelized total revenue requirement
(TRRlev) [8]. However, none of them is known with the required precision at
the time when the optimization must be conducted. For estimating investment
costs, several cost models can be found in the literature (e.g., [3, 26, 58, 60]),
each of them leading after optimization to a different structure and different
operation parameters.

The formulation of a model for plant-design optimization leads to a mixed-
integer nonlinear program due to (a) required discrete decisions (existence,
connection, and operation states of plant components) in the design part, and
(b) nonlinear equations that describe, e.g., the thermodynamic properties of
the working fluids and the off-design performance of components. While the
number of discrete variables is still moderate, main challenges are posed by
the nonconvexity of some equations. Both, discrete variables and nonconvex
equations can lead to a feasible region that is disconnected and possesses many
local minimal points. Thus, standard local search methods or an “easy” trans-
formation into a mixed-integer linear model by linearization is prohibited and
efficient mathematical algorithms are needed that can deal with the inherent
nonconvexity of the search region to find global or good local optimal points.

Next to the already mentioned stochastic methods [7, 10], several ap-
proaches exist for the deterministic global optimization of a (nonconvex)
MINLP problem [22,27,40,42]. In successive outer-approximation algorithms
[11,18,21,62], an initial relaxation of the MINLP problem is iteratively solved
and improved until a feasible point of the MINLP problem is found. If the
problem is convex, a linear relaxation can be generated by linearizing nonlin-
ear equations. However, working with linearizations of nonconvex equations
can easily cut off global optimal points or lead to an infeasible relaxation. For
such problems much effort is spend on finding good convex underestimators of
nonconvex functions [2,53] since they allow us to generate a convex relaxation
of the problem that can be solved efficiently. To further achieve convergence
to a global optimum, convex relaxation-based methods are often embedded
in a Branch and Bound framework [1]. Such methods subdivide the feasible
set into smaller subregions (branching) to allow for tighter convex underesti-
mators on the corresponding subproblems. Comparing lower bounds given by
evaluating the relaxation of a subregion with upper bounds calculated from
feasible points of the original problem then allows coordinating the search for
a global optimum [52]. The open source software package LaGO (Lagrangian
Global Optimizer) [42–45] is an implementation of such a method and is used
for the plant design optimization discussed in this paper (cf. Section 1.3).
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1.2 Model of a cogeneration power plant

We consider a simplified gas-fired combined cycle plant with steam extraction
for a subsequent desalination unit. Different publications (e.g., [28]) discuss
the relatively low importance of obtaining high electric efficiencies at these
plants due to some specific local conditions, e.g., low gas prices. Therefore the
optimization method is applied to a simplified single-pressure combined cy-
cle plant with a supplementary firing for each heat recovery steam generator
(HRSG). Figure 1.2 shows the superstructure of such a plant. The superstruc-
ture is based on realized power plant designs (e.g., [28, 48]).
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Fig. 1.2. Superstructure of the cogeneration power plant.

In accordance with [25] and industrial information, the model considers
two different types of gas turbines: Three Siemens V94.3A gas turbines and
two Siemens V94.2 gas turbines. The V94.3Aa, V94.3Ac and V94.2a gas tur-
bines can feed the first heat-recovery steam generator HRSG1. Due to earlier
studies, e.g. [31], the second heat-recovery steam generator HRSG2 is fed by
only two gas turbines: The V94.3Ab and the V94.2b turbines. Each heat-
recovery steam generator is operated independently and can be fed by a free
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combination of these gas turbines. The optional additional burners AB1 and
AB2 can increase the exhaust gas temperature.

The two heat-recovery steam generators consist of an economizer ECON,
an evaporator EVAP and a superheater SPHT. To simplify the model of the
plant, only one subsequent water injector TMX is optionally used for both
heat-recovery steam generators to regulate the steam temperature. The steam
is supplied to the high, the intermediate (both indicated with HPST) and the
low-pressure (LPST) sections of the steam turbine. After the intermediate-
pressure section of the steam turbine, the steam for the subsequent desalina-
tion unit is extracted at SP1. The condensate returning from the desalination
plant is mixed with the outlet stream of the low-pressure steam turbine in
the condenser COND. The feedwater pump compresses the feedwater to the
required sliding pressure. Only steady-state operation points are considered.

Next to the operation at full load (operation point OP1), we considered
three more characteristic load conditions, each with a different demand for
electricity and extracted steam, cf. Table 1.1. This, in reality uncertain, load
information can be obtained from statistical methods, expert-knowledge, or
existing data sets by using data mining techniques. We achieved good results
using so-called self organizing maps (SOM, see also [33]), a special kind of
artificial neural networks for the classification of data sets [20, 29], e.g., the
load profile shown in Figure 1.1.

Table 1.1. Operation points of the cogeneration power plant shown in Figure 1.2.

Name Operating hours Electric output ṁ32

h/a MW t/h

OP1 1972 750 133.1
OP2 1972 600 86.7
OP3 1972 500 78.7
OP4 1972 400 86.7

In the following sections we give some insight into the thermodynamic and
economic parts of the model and its formulation as a mathematical program.

1.2.1 Thermodynamic model

The thermodynamic part of the model describes the physical behavior of
the plant. We start with a discussion of the design phase of the plant, the
calculation of the thermodynamic properties of the working fluids and the
component sizing. After completing the plant design we can calculate the
investment costs (cf. Section 1.2.2). In the subsequent phase the off-design
performance of single components and of the overall plant can be computed.
Considering partial-load operation points in the design optimization allows us
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to evaluate the operation costs also for these operation points. In this way,
the optimization model becomes more realistic, but it requires an integration
into the model of the off-design behavior for every considered operation point.

A possible result of the design optimization is, for example, the suggestion
to install two gas turbines for each heat-recovery steam generator. In this case
and when the power plant is operated under partial-load conditions, one of
these gas turbines could be switched off while the other one would be running
under full-load conditions. If so, the overall efficiency increases (lower fuel
cost), but the investment costs increase too.

Exemplary, we illustrate the design and off-design model of a heat ex-
changer, see Figure 1.3.

(hot stream)
2 1

43
(cold stream)

HTX

Fig. 1.3. Schematic illustration of a heat exchanger (HTX)

Design modelling using a heat exchanger

As an example for the design modelling of components, an adiabatic heat
exchanger is discussed. To build a model of a heat exchanger, its independent
variables have to be known. Equations (1.1) – (1.6) are necessary for specifying
the heat exchanger performance. The subscripts indicate the stream numbers
shown in Fig. 1.3:

Q̇ = ṁ1 (h1 − h2) (1.1)

Q̇ = ṁ3 (h4 − h3) (1.2)

Q̇ = k A∆Tlog (1.3)

∆Tlog =
(T2 − T3) − (T1 − T4)

ln(T2 − T3) − ln(T1 − T4)
(1.4)

hi = f(Ti, pi or xi), i = 1, . . . ,4 (1.5)

pexit,j = f(pinlet,j), j = cold, hot (1.6)

where Q̇ denotes the rate or heat transfer heat rate, k is the overall heat
transfer coefficient, A represents the heat exchanger surface area, h denotes
the enthalpy, T is the temperature, p is the pressure, and x represents the
steam quality.

Eight of these 18 (ṁ1, ṁ3, h1, h2, h3, h4, T1, T2, T3, T4, p1, p2, p3, p4,
Q̇, ∆Tlog, k, A) variables can be selected more or less independently. In the
design optimization, the values of these independent decision variables have
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to be determined to maximize the overall plant efficiency or to minimize the
overall product cost using the respective objective function. Here, the sizing
and costing of the components refers to the design case where the maximal
values of pressure, temperature, and mass flow rate are used. The information
obtained from the design case is used to calculate the off-design performance,
where additional equations have to be considered.

Off-Design modelling

The description of the off-design performance of a heat exchanger requires
additional equations, some of which are taken from the commercial software
EBSILONProfessional 7.00 [51].

Q̇ = k A∆Tlog (1.7)

1

k
=

1

αc,N FK1
+

1

αh,N FK2
(1.8)

FK1 =

(

ṁc

ṁc,N

)Exp
1

(1.9)

FK2 =

[

1 − 0.0005

(

(Th,i,N + Th,e,N) − (Th,i + Th,e)

2

)] (

ṁh

ṁh,N

)Exp
2

(1.10)

Here, α represents the heat transfer coefficient, c and h stand for cold and
hot and Exp1 and Exp2 denote some component specific exponents.

For a steam turbine operating at off-design conditions, the characteristic
curve describing its partial-load performance is modelled in accordance with
Equation (1.11) which describes the so-called Stodola law. It correlates the
inlet and outlet pressures pi and pe, the inlet temperature Ti and the mass
flow rate ṁ at the actual (partial load) and nominal (design point) conditions:

ṁ

ṁN
=

pe

pe,N

√

Ti,N

Ti

√

1 − (pi/pe)2

1 − (pi,N/pe,N)2
(1.11)

The isentropic efficiency ηs of the turbine, that compares the real and ideal
expansion in the turbine, is a function of the mass flow rate:

ηs

ηs,N
= − 1.0176

(

ṁ

ṁN

)4

+ 2.4443

(

ṁ

ṁN

)3

− 2.1812

(

ṁ

ṁN

)2

+ 1.0535

(

ṁ

ṁN

)

+ 0.701.

(1.12)

At partial-load operation, the efficiency ηs must be adjusted with respect to
changes in the outlet steam quality ∆xe. When the exiting steam quality xe is
lower than 1, this adjustment is carried out using the following approximation

ηs,corr = ηs −
1

2
∆xe, (1.13)

where ηs denotes the isentropic efficiency in accordance with (1.12) and ηs,corr

denotes the resulting isentropic efficiency after the correction for steam quality.
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Working fluid properties

The thermodynamic properties of the exhaust gases are calculated using equa-
tions from Knacke, Kubaschewski, and Hesselmann [32]. For example, the
molar enthalpy of a pure ideal gas stream i is calculated with the following
equation:

hi = 103

(

href
i + aiy +

bi

2
y2 − ciy

−1 +
di

3
y3

)

, (1.14)

where y = T/1000, href is associated with the reference value calculating the
enthalpy and ai, bi, ci, and di are constants depending on the substance being
considered. All gas streams in the process are treated as mixtures of ideal
gases. Therefore the molar enthalpy h of these gas streams is calculated with
the aid of the respective mole fractions xj of the j components:

h =
∑

j

xj ṅ hj (1.15)

Here is ṅ the molar flow rate that can be calculated using the mass flow
rate ṁ and the respective molar mass M

ṅ =
ṁ

M
. (1.16)

To enable the software to find a good solution, the high degree polynomials
from the original water steam properties (IAPWS IF97 [61]) are simplified
here to polynomials of a degree at most four. A detailed discussion of these
polynomials is presented in [3].

1.2.2 Economic model and uncertainty in investment costs

In addition to the thermodynamic model of the power plant, an economic
analysis is needed to calculate its objective function, the annual levelized
Total Revenue Requirement (TRRlev [8]). TRR includes the fuel costs, the
operating and maintenance expenses as well as the carrying charges (which
consider the capital recovery, interest, dividends, taxes, and insurances). The
levelized TRRlev is a function of the annual values TRRn

TRRlev = ieff
(1 + ieff)n

(1 + ieff)n − 1

∑

n

TRRn

(1 + ieff)n
, (1.17)

where ieff denotes the effective interest rate and n the number of years con-
sidered in the analysis.

Purchased equipment cost (PEC in the following), fuel cost (Ċf in the fol-
lowing) and operating hours have a strong influence on a cost-effective design
of the plant. PEC are calculated for the full-load case, since here the largest
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pressures, temperatures and mass flow rates occur (see also Section 1.2.1),
whereas Ċf and other operating cost are calculated at every operation point.

For calculating the PEC, cost functions for each component are used.
These functions depend on the characteristic variables of a component, e.g.,
the surface area of a heat exchanger A or the power output of a turbine
Ẇ . However, in most cases the “real” cost function, if there is one, is not
known. Instead, different cost models are discussed in the literature (e.g.,
[3, 26, 58, 60]). Two very different cost models for a steam turbine [3, 26] are
shown in Figure 1.4.
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Fig. 1.4. PEC calculated with two extremely different cost models for a steam
turbine. Here, PEC is a function of the power output Ẇ .

Although the differences in the PEC shown in Figure 1.4 seem to be too
large from the engineer’s point of view, we consider these two very different
models as an academic example for the uncertainties associated with cost
functions. It must be emphasized that such differences in a “real world” engi-
neering problem are unrealistic. For considering the effects of the different cost
approaches (Section 1.4.2) we employ in the objective function the assumed
reliability of each function as a weighting factor.

1.2.3 Formulation as mathematical program

Two different types of variables are used to formulate the optimization prob-
lem as a MINLP: Binary and continuous variables. Binary variables are needed
to decide, (a) which of two different types of gas turbines are used for each
heat-recovery steam generator, (b) which of two possible heat-recovery steam
generators are used, and (c) whether there is a need for the additional burners
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AB1 and AB2. Additionally we use binary variables to determine the actual
state of some streams. Here, these variables indicate whether the working fluid
is superheated or its thermodynamic state is within the liquid–vapor region
and thus the steam quality lies strictly between 0 and 1.

Isentropic efficiencies, heat exchanger surfaces, and the thermodynamic
properties of each working fluid represent continuous variables. The latter are
calculated by nonlinear equations such as (1.14) and (1.15). Table 1.2 shows
the decision variables for the design and the off-design models.

Table 1.2. Binary (yi) and continuous decision variables in the model with full-load
operation conditions OP1 and partial-load operation conditions OP2 to OP4 (see
Table 1.1) indicated by superscripts. GT1-3 indicate the electric power output of
the gas turbines V94.3Aa–V94.3Ac and GT4-5 indicate the electric power output of
the gas turbines V94.2a and V94.2b, respectively.

Component Variable design conditions off design conditions cost part
(OP1) (OP2-OP4)

GT1-5 operation y1
GT1 - y1

GT5 y2,3,4
GT1 - y2,3,4

GT5 –
GT1-5 existence – – yc

GT1 - yc
GT5

AB1,2 operation y1
AB1, y1

AB2 y2,3,4
AB1 , y2,3,4

AB2 –
AB1,2 existence – – yc

AB1, yc
AB2

HRSG1,2 operation y1
HRSG1, y1

HRSG2 y2,3,4
HRSG1, y2,3,4

HRSG2 –

number of binary variables 9 27 7

GT1-5 power output Ẇ 1
GT1 - Ẇ 1

GT5 Ẇ 2,3,4
GT1 - Ẇ 2,3,4

GT5 –

AB1,2 fuel flow rate ṁ1
f,AB1, ṁ1

f,AB2 ṁ2,3,4
f,AB1, ṁ2,3,4

f,AB2 –

TMX mass flow rate ṁ1
23 ṁ2,3,4

23 –

pressure p1
14 – –

pressure p1
8 – –

SPHT ∆T ∆TSPHT,N – –
EVAP ∆T ∆TEVAP,N – –
ECON ∆T ∆TECON,N – –
COND ∆T ∆TCOND,N – –

number of cont. variables 17 24 0

The entire model with its 41 independent continuous and 43 independent
binary variables is formulated in GAMS [24] as one system of equations in
form of a large mixed-integer nonlinear program. Here, the following equations
are used: Mass, energy, and impulse balances, equations for calculating the
working fluid properties, equations for calculating the components full- and
partial-load performance, and cost equations. Additional constraints result
from the limitation of temperatures, mass flow rates, and pressures in the
partial-load cases compared to the design (full-load) case.
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Due to the simultaneous solution of the optimization problem, all equa-
tions and constraints of the model have to be satisfied. Therefore, it is neces-
sary that even if some gas turbines associated with one heat-recovery steam
generator are not included in the actual design of the plant, the exhaust gas
mass flow rate passing through the heat-recovery steam generator and its
thermodynamic variables are not equal to zero. Otherwise the calculation of
values like the logarithmic mean temperature difference ∆Tlog in the heat ex-
changers yield function evaluation errors in the optimization process. Hence,
e.g. the mixer M3 (Figure 1.2) has to be modelled in an appropriate way:

yM3 ≤ y94.3,b + y94.2,b , (1.18)

yM3 ≥ y94.3,b , (1.19)

yM3 ≥ y94.2,b . (1.20)

Here, the binary variable yM3 indicates the operation of the heat-recovery
steam generator in the respective load case (yHRSG,2 in Table 1.2). The energy
balance equation is formulated using a so-called big-M formulation incorpo-
rating the upper bounds on the variables ṅ1 and h1 (ṅ1 and h1, respectively):

ṅ1 h1 ≤ ṅ29 h29 + ṅ36 h36 + (1 − yM3) (−1) ṅ1 h1 , (1.21)

ṅ1 h1 ≥ ṅ29 h29 + ṅ36 h36 − (1 − yM3) (−1) ṅ1 h1 . (1.22)

Finally, the equations describing the chemical composition of the gas
streams are formulated as

x1,N2
ṅ1 ≤ ṅ29 x29,N2

+ ṅ36 x36,N2
+ (1 − yM3)x1,N2

ṅ1 (1.23)

x1,N2
ṅ1 ≥ ṅ29 x29,N2

+ ṅ36 x36,N2
− (1 − yM3)x1,N2

ṅ1 . (1.24)

where ṅi denote the mole flow rates and xN2
the mole fraction of nitrogen.

The equations for the other substances in the exhaust gas streams have to
be formulated accordingly. Obviously, (1.21) – (1.24) can be satisfied for both
cases, yM3 = 0 and yM3 = 1. For yM3 = 0 the left hand side variables can be
chosen according to the heat exchanger requirements.

1.3 Solution of the MINLP

As mentioned before, the presence of discrete decisions and nonlinear noncon-
vex equations describing the design, thermodynamic status, and behavior of
the plant leads to a nonconvex MINLP whose solution requires sophisticated
algorithms. Currently, there are only a few solvers available that can explicitly
handle nonconvex MINLPs. To our best knowledge LaGO [45] is currently the
only freely available one.

In this section we describe LaGOs enhanced Branch and Cut algorithm
in more detail. At first the algorithm approximates nonconvex functions by
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convex underestimators, i.e., a convex function that underestimates the re-
spective original function. Next, the obtained convex relaxation is linearized
via the construction of supporting hyperplanes. These cutting planes are used
to initialize and improve a linear relaxation of the problem. By means of this
relaxation it is possible to efficiently compute reliable lower bounds to the
global optimum and starting points for local searches for feasible solutions.
A successive branching of the search space enables an improvement of the
underestimators in the progression of the algorithm and thus a tightening of
the linear relaxation.

In the following sections we focus on some components of LaGOs algo-
rithm. The preprocessing routines include the investigation of the problem
structure of a given MINLP (Section 1.3.1), the initialization of relaxations
that lead to a linear outer approximation (Section 1.3.2), and methods that
are used for the reduction of variables bounds (Section 1.3.3). Finally, we give
a short overview of LaGOs Branch and Cut algorithm (Section 1.3.4). We
use a general MINLP formulation to emphasize the wide applicability of the
proposed method.

1.3.1 Problem structure analysis

Problem formulation

A general MINLP can be formulated as

min b⊤0 x (P)

such that h(x) ≤ 0,

x ∈ [x, x],

xj ∈ Z, j ∈ B,

where B ⊆ {1, . . . ,n}, b0, x, x ∈ R
n, and h : R

n → R
m is twice-continuously

differentiable. The set [x, x] := {x ∈ R
n|xi ≤ xi ≤ xi} is referred as box and

constitutes finite bounds on the variables. For the sake of simplicity we assume
that the objective function is linear and equality constraints were replaced by
two inequalities. Note, that to handle a nonlinear objective function h0(x),
one can minimize a new variable y under the additional constraint h0(x) ≤ y.

LaGO requires procedures for the evaluation of function values, gradients,
and Hessians. This restriction to “black-box functions” has the advantage
that very general functions can be handled, but also the disadvantage that
without insight into the algebraic structure of the functions hi(x) advanced
reformulation and box reduction techniques (as in [1, 40, 53]) cannot be used
and we are forced to use sampling methods in some components of LaGO.

Block separability

At first, LaGO investigates the sparsity structure and block separability of the
functions hi(x). A function is called block-separable if it can be represented as
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a sum of sub-functions, each depending only on a small number of variables.
Block separability is a common property of real world applications where
singular complex components are coupled by linear constraints. Also the model
discussed in the previous section is highly block separable, since the power
plant components, which are described by nonlinear equations, are linked only
by linear equations for the working fluids (molar fraction xi, mass flow rate
ṁ, temperature T , pressure p, enthalpy h, and entropy s). Using a simple
sampling technique for the recognition of sparsity patterns in the Hessian
of the black-box functions hi(x) [45], LaGO automatically reformulates each
function into the form

hi(x) = ci + b⊤i x +

qi
∑

k=1

x⊤
Qi,k

Ai,kxQi,k
+

pi
∑

k=1

hi,k(xNi,k
), (1.25)

where ci ∈ R, bi ∈ R
n, and the index sets Qi,k and Ni,k denote quadratic and

nonlinear nonquadratic variables, respectively. They are also referred as blocks

of the function hi(x). The structure (1.25) allows us to distinguish between
linear, quadratic, and nonquadratic parts of a function, and to treat each
block separately if advantageous.

Convexity

Originating from the block separable formulation (1.25), LaGO checks for
each quadratic block x⊤

Qi,k
Ai,kxQi,k

and each nonquadratic block hi,k(xNi,k
)

whether it represents a convex function or not. Therefore, for a quadratic
function x⊤

Qi,k
Ai,kxQi,k

, it is sufficient to check whether the minimal eigenvalue

of Ai,k is nonnegative. For a nonquadratic function hi,k(xNi,k
), the minimal

eigenvalue of the Hessian ∇2hi,k(xNi,k
) is evaluated at sample points from the

box [xNi,k
, xNi,k

]. Observe that only the sign of the eigenvalue is of interest,
so that even for curvaceous functions a sufficiently rich set of sampling points
yields correct results.

1.3.2 Relaxations

As a result of the structure analysis, LaGO knows for each block in the for-
mulation (1.25) whether it is convex or not. For the computation of a convex

underestimator h̆i(x) of each nonconvex function hi(x), first nonconvex non-
quadratic terms in hi(x) are underestimated by possibly nonconvex quadratic
terms. Afterwards, each nonconvex quadratic term is convexified. Finally, a
linear relaxation is generated by linearizing the convexified functions in refer-
ence points and dropping of integrality restrictions on the variables xj , j ∈ B.

Quadratic underestimators

Let g : R
r → R be a nonconvex function hi,k from (1.25), r = |Ni,k|. A

quadratic underestimator q(x) = x⊤Ax + b⊤x + c of g(x) is computed by
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using a powerful sampling algorithm [41,45]. This algorithm allows LaGO to
determine quadratic underestimators of nonconvex functions for which only
function and derivative evaluation methods are available. Starting with an
initial sample set S consisting, among others, of vertices of the box [x, x] and
a distinguished sample point x̂ ∈ S (often a local minimizer of g(x)), the
following two steps are iterated:

1. Determine coefficients A, b, and c of q(x) by solving the linear program

min
A,b,c

∑

x∈S

g(x) − q(x) (U)

such that q(x) ≤ g(x), x ∈ S,

q(x̂) = g(x̂).

2. For points x̃ ∈ S with q(x̃) = g(x̃) maximize locally the error q(x) − g(x)
over the box [x, x] by solving a nonlinear program starting from x̃. If this
yields a point x̌ with q(x̌)− g(x̌) > δtol, add the inequality q(x̌) ≤ g(x̌) to
(U) and go to step 1. Otherwise, i.e., the maximal error δmax is below the
tolerance δtol, lower q(x) by δmax (i.e., subtract δmax from c) and stop.

Figure 1.5 illustrates a quadratic underestimator for the logarithmic mean
temperature difference obtained by this method.
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Fig. 1.5. The function ∆Tlog = (∆T1 −∆T2)/ (ln ∆T1 − ln ∆T2) (logarithmic mean
temperature difference) as used in the modelling of the partial-load performance
(left, cf. (1.4)) and a corresponding quadratic underestimator (right). ∆Tlog has
been fixed for visualization.

Convexification of quadratic terms

For the convexification of nonconvex quadratic terms f(x) = x⊤Ax, LaGO
uses α-underestimators as introduced by Adjiman and Floudas [2]. An α-
underestimator of f(x) over the box [x, x] is the function

f̆(x) = f(x) +

r
∑

i=1

max{0, − λ1(WAW )}

(xi − xi)
2

(xi − xi)(xi − xi), (1.26)

where λ1(D) denotes the minimal eigenvalue of a matrix D and the diagonal
matrix W has the box-width x−x on its diagonal and has been introduced for
scaling reasons. It is clear that f̆ is convex and f̆(x) ≤ f(x) for all x ∈ [x, x] [2].
Figure 1.6 illustrates a convexified quadratic underestimator.
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Fig. 1.6. Convex α-underestimator of the nonconvex quadratic underestimator in
Figure 1.5.

Linear relaxation

The linear relaxation (R) of (P) is generated by linearizing each nonlinear

function hi(x) (if convex) or its convexification h̆i(x) at a reference point x̂.
For initialization, the point x̂ is chosen to be an optimal point of the nonlinear
convex relaxation. During the Branch and Cut algorithm (Section 1.3.4), (R)
is augmented by further linearizations at candidates for optimal points of (P)
and optimal points of (R).

Further, to address the integrality restrictions on xj , j ∈ B, in (R), mixed-
integer-rounding cuts, which have their origin in mixed-integer linear program-
ming [35, 38], are added to (R). These linear inequalities allow us to cut off
non-integral solutions from (R) [45].

As a third method for the computation of valid inequalities, LaGO can
generate so called interval gradient cuts [9, 42], which are based on interval
arithmetic calculations [39]. Assume that for a function hi(x) it is possible
to compute an enclosure [d, d] ⊂ R

n of the gradient ∇hi(x) over [x, x], i.e.,
∇hi(x) ∈ [d, d] for all x ∈ [x, x]. Then, given a reference point x̂ ∈ [x, x],

hi(x̂) + ∇hi(x̂)(x − x̂) + min
d∈[d,d]

(d −∇hi(x̂))⊤(x − x̂) ≤ hi(x) ∀x ∈ [x, x].

Introducing new positive variables y+ and y− and writing x − x̂ = y+ − y−

with y+
j = max{0,(x − x̂)j} and y−

j = max{0, − (x − x̂)j}, j = 1, . . . ,n, we
obtain (due to the inequality hi(x) ≤ 0 in (P)) the interval gradient cut

hi(x̂) + ∇hi(x̂)(x − x̂) + (d −∇hi(x̂))⊤y+ − (d −∇hi(x̂))⊤y− ≤ 0.

These cuts have the advantage that they can be derived directly from a non-
linear and nonconvex function and thus do not rely on a prior convexification
step. On the other hand, the modelling of the conditions y+

j = max{0,(x−x̂)j}

and y−

j = max{0, − (x − x̂)j} would require additional discrete variables.
Therefore, in order to fit into the linear relaxation (R), we instead add
only the equations x − x̂ = y+ − y−, y+ ≤ x − x̂, y− ≤ x̂ − x, and
y+

i + y−

i ≤ max{xi − x̂i,x̂i − xi}, i = 1, . . . ,n, to (R).
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1.3.3 Methods to tighten the bounding box

Since the quality of the underestimators and cuts depends strongly on the
bounding box [x, x], it can be advantageous to apply boxreduction procedures
in the preprocessing. Also during the Branch and Cut algorithm, a branching
operation might facilitate possible reductions of variable bounds, and even
detect infeasibility for a subregion or fix binary variables.

In LaGO, two boxreduction techniques are currently implemented. The
first method computes a new bounding box on the variables by enclosing the
feasible set of (R), i.e., each or only some selected variable is minimized and
maximized w.r.t. the constraints of (R) [45].

The second method is a simple constraint propagation method and thus
utilizes only one constraint at a time, but works on the original formulation
(P). Similar to the interval gradient cuts, this procedure relies on interval
arithmetic operations (as they are available within the GAMS [24] interface):
For a box U ⊆ [x, x] assume that hi(x) can be written as hi(x) = g(x) + bxj

with xj not appearing in g(x) and b ∈ R, b 6= 0. Denote by g(U) an interval
in R ∪ {±∞} s.t. g(x) ∈ g(U) for all x ∈ U . Let [y

j
, yj ] = −g(U)/b. If b > 0,

xj can be updated to min{xj , yj}. Otherwise, if b < 0, xj can be updated to
max{xj, yj

}. In case that the new bounds define an empty box, infeasibility

of the subproblem with box U is detected. After the bounds on xj have been
reduced, other constraints depending on xj might yield further box reductions
for other variables. Thus, the same procedure is applied to these constraints.
This process iterates until the box stops to reduce significantly or infeasibility
is detected.

1.3.4 Branch and Cut algorithm

To search for a global optimum of (P), the algorithm follows a Branch and
Bound scheme. Lower bounds on the global optimal value are computed by
solving the linear relaxation, while upper bounds are given by the objective
function value of incumbent solutions. These are points that are feasible for
(P) and are found by a local search, that is the discrete variables are fixed
in (P) and a descent algorithm is applied to the resulting nonlinear program.
The fundamental idea of Branch and Bound is that partitioning the search
space allows to improve the underestimating functions on each subregion and
thus tightens the linear relaxation. An improved linear relaxation then results
in higher lower bounds and new incumbent solutions due to better starting
points for the local search.

The algorithm starts with considering the problem on its complete feasible
region. This problem is also called the root problem. Solving (R) yields a lower
bound and a starting point for a local search in (P). If the local search is suc-
cessful, the first incumbent solution has been found and an upper bound can
be computed. Otherwise, the upper bound is initialized with +∞. If lower
and upper bounds match, a globally optimal solution has been found and
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the procedure terminates. Otherwise, two new problems are constructed by
dividing the feasible region of (P) using a subdivision of the box [x, x] (branch-

ing). For each child the linear relaxation (R) is improved by adding further
linearizations of nonlinear convex or convexified functions, interval gradient
cuts for nonconvex constraints, and mixed-integer-rounding cuts. The new
problems become children of the root problem, and the algorithm is applied
recursively on each subproblem. This process constructs a tree of subprob-
lems, the Branch and Bound tree. Since each node of the Branch and Bound
tree has its own linear relaxation, the generated cutting planes need to be
valid (i.e., underestimating the original functions) only on the corresponding
subregion of the original feasible space. Hence, linearizations of convexified
functions are generated with respect to α-underestimators that are valid for
the corresponding subbox only, cf. (1.26).

The decision on how to subdivide a part of the search space (the branching

rule) is based on the infeasibility of the solution of the linear relaxation, i.e.,
the fractionality of discrete variables and the distance between a quadratic
function and its convexification [45]. Subdividing w.r.t. a variables xj , j ∈
B, means to create two nodes with additional restrictions xj ≤ ⌊x̂j⌋ and
xj ≥ ⌈x̂j⌉, respectively, where x̂j 6∈ Z is the value of xj in a solution of (R).
Subdividing w.r.t. a continuous variable xj means to create one node with
increased lower bound x̂j for xj and one node with decreased upper bound
x̂j for xj . Thus, the α-underestimator (1.26) and the derived linearizations
improve in the new nodes.

The choice of the next node to be processed (the node selection rule) is
guided by the gap between the lower bounds of the nodes and the (uniform)
upper bound [45].

Since the quadratic underestimators q(x) are not updated during the al-
gorithm and are computed by a heuristic method (Section 1.3.2), convergence
of the gap between lower and upper bound to zero and locating a global op-
timum cannot be ensured for MINLPs with nonquadratic nonconvex terms.
However, as our results in the next section show, LaGOs Branch and Cut
algorithm is able to compute good local optimal points for difficult MINLPs.
For some simplified models, LaGO is even able to reduce the gap below 1%.

1.4 Optimization results

We consider the power plant model presented in Section 1.2. At full load, the
plant has an output of Ẇ = 750MW electric power and ṁ32 = 133.1 t/h
process steam. Further assumptions are made:

• The existence of two heat-recovery steam generators is provided. They can
be operated independently.

• To simplify the model, the nominal isentropic efficiencies ηs,N of the steam
turbines are fixed.
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• The steam quality x32 must be within the steam vapor region and thus
0 ≤ x32 ≤ 1. Due to this assumption there is no need for further binary
variables that describe the thermodynamic properties of this stream.

• The Lower Heating Value of methane is LHV = 50.015kJ/kg. The fuel
(natural gas) is approximated as methane.

• The fuel cost is cf = 4e/GJLHV, its real rate of increase is set to 1.0% per
year, and the rate of inflation is set to ri = 2.0%.

1.4.1 Design optimization with consideration of partial-load

behavior

The mathematical program that describes the plant design and plant opera-
tion at full and partial load consists of 2204 continuous, and 43 binary vari-
ables, and 2517 equations. LaGO computes 433 quadratic underestimators
and 834 α-underestimators in the preprocessing (cf. Section 1.3.2).

The independent decision variables were given in Table 1.2, the respective
optimization results for the design optimization considering the partial-load
behavior are shown in the Tables 1.3 and 1.4. Note, that LaGO was not able
to close the gap and thus prove global optimality for this model. Instead,
we stopped the optimization after 24 hours (ca. 8000 Branch and Bound
iterations on a Linux 2.6 AMD Athlon64 X2 6000+ computer with 3 GHz
clock frequency and 4 GB RAM) at a gap between lower and upper bound of
15%. The presented design was found by LaGO after approx. seven hours.

Some of the results shown in Table 1.3 might be unexpected, since ap-
parently the pinch temperature difference ∆TPINCH1 and the temperature
difference in the superheater ∆TSPHT1 are rather high while the subcooling
at the economizer outlet ∆TSub,ECON1,N is low. The first two aspects are not
required for the operation of the plant at full-load. However, since we included
also three partial-load operation points into the model, we forced the solver to
find a design that is flexible enough to operate at the considered partial-load
operation points.

Although the requested electric power output can be satisfied by the use
of only two gas turbines and a subsequent water-steam cycle, the existence of
four gas turbines enables a more flexible partial-load operation. The additional
burners AB1 and AB2 and the water injector TMX were incorporated in the
plant structure but should not be operated in the full-load case OP1. The
operation of the gas turbines, the additional burners and the water injector
in the respective partial-load cases is shown in Table 1.4.

The use of the additional burners and the water injector enables a plant
operation without evaporation of the working fluid in the economizer during
partial-load operation. The relatively high pressure in the condenser is nec-
essary to get acceptable steam qualities x13 at the steam turbine outlet at
partial-load operation. Some of the four existing gas turbines are shut down
successively as partial load decreases. Thus, each gas turbine is tried to be op-
erated at conditions as close as possible to the respective full-load conditions.
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Table 1.3. Decision variables for the design optimization (nominal values, numbers
refer to Figure 1.2). Operating points are considered according to Table 1.1. The first
part shows the binary variables and the respective power output of the gas turbines
in the full-load case, the second part gives the continuous variables. ∆TSPHT1 = T22−

T12, ∆TPINCH1 = T6 − T11, ∆TSub,ECON1 = Tsaturated(p10) − T10, ∆Tcw = T16 − T15

Decision Variable Value

V94.3Aa –
V94.3Ab 1 (177.3 MW)
V94.3Ac 1 (253.5 MW)
V94.2a 1 (93.1 MW)
V94.2b 1 (75.3 MW)
AB1 (ṁfuel) 1 (0.0 kg/s)
AB2 (ṁfuel) 1 (0.0 kg/s)
TMX1 (ṁwater) 1 (0.0 kg/s)

p14,N [bar] 53.5
p8,N [bar] 0.12
∆TSPHT1,N/SPHT2,N [K] 102.3 / 89.7
∆TPINCH1,N/PINCH2,N [K] 32.9 / 22.4
∆TSub,ECON1,N/Sub,ECON2,N [K] 2.2 / 1.5
∆Tcw,N [K] 4.0

Table 1.4. Operation of the four gas turbines, the additional burners AB1 and AB2
and the water injector at the different operation points.

Component Variable Unit OP1 OP2 OP3 OP4

V94.3Aa Ẇ MW – – – –

V94.3Ab Ẇ MW 177.3 192.4 0.0 0.0

V94.3Ac Ẇ MW 253.5 253.5 216.3 0.0

V94.2a Ẇ MW 93.1 149.3 149.3 149.3

V94.2b Ẇ MW 75.3 0.0 149.3 132.5

ṁf,AB1 ṁ kg/s 0.00 0.02 0.00 0.00
ṁf,AB2 ṁ kg/s 0.00 0.00 0.00 0.02

ṁ23 ṁ kg/s 0.00 0.00 1.80 1.80

Note that conventional optimization procedures (e.g. [3, 7, 13, 16, 54–57])
might easily have failed to find a design that is feasible for some of the con-
sidered partial-load cases due to a violation of the pinch and steam quality
constraints. That is why conventional optimization approaches with consid-
eration of only one operation point require a subsequent variation of some
decision variables using heuristic methods. These methods do not guarantee
cost optimality of the final design obtained after these corrections, e.g., the
subcooling at the economizer outlet ∆TSub,ECON,N would be too high.
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The objective function value is the levelized total revenue requirement
TRRlev. The economic assumptions were presented at the beginning of this
section. Table 1.5 shows the PEC, the levelized fuel cost flow rate Ċf,i for the
respective load cases, and the TRRlev. The fuel costs are calculated by

Ċf,i = cf LHV ṁf,OP,i ohOP,i, (1.27)

where ṁf,OP,i denotes the fuel mass flow rate and ohOP,i the operating hours
in the respective load case. The respective costs for the different products
(process steam and electricity) can be calculated by using an exergy-based
cost allocation method [8].

Table 1.5. Operation costs for the first year with an optimized design. Operation
according to Table 1.1. Fuel costs Ċf are calculated by (1.27).

Costs Unit Value

PEC Mio. e 197.2

Ċf,OP1 Mio. e/a 44.7

Ċf,OP2 Mio. e/a 32.3

Ċf,OP3 Mio. e/a 28.1

Ċf,OP4 Mio. e/a 23.4
TRRlev Mio. e/a 236.2

1.4.2 Sensitivity of an optimal design with respect to uncertain

investment cost

In the following we present a first attempt to analyse the effect that uncer-
tainty in the investment cost of a power plant component has on the optimal
plant design. For this purpose we have considered only the design operation
point (full-load case) with an operation of 8000 hours full load equivalent per
year. We have chosen the two academic cost models shown in Figure 1.4 (cf.
Section 1.2.2) for the high-, intermediate-, and low-pressure sections of the
steam turbine and compared the designs that are found by the solver when
either one of the models is applied or when a weighted average (A/B) is used
for calculating the PEC of a steam turbine. Table 1.6 presents the results.

The PEC and TRRlev values depend on the cost function that was used.
But the differences among the results (structure and operation variables) of
the three cases (A, B, and A/B) are practically negligible. Due to this, the
TRRlev in this analysis is basically influenced by the PEC of the turbines.
Altogether, in this example, the design is significantly influenced by the fuel
cost, i.e., the cost optimal design tends towards a thermodynamic optimal
design. Hence, the results of the optimized designs recalculated with different
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Table 1.6. Comparison of optimization and simulation results with different cost
models: A, B (cf. Section 1.2.2), and a weighted average of the cost functions (A/B).

Optimized with cost approach
Variable Unit A B A/B

PEC Mio e 225.42 159.96 192.70

Ċf Mio e/a 170.74 170.62 170.68
TRRlev Mio e/a 300.19 278.57 289.38

p14 bar 38.17 38.17 38.17
T21

◦C 415.64 415.64 415.64

ẆHPST MW 108.94 109.18 109.07

ẆLPST MW 85.21 85.40 85.31

TRRlev A Mio e/a 300.19 300.20 300.20
calculated with B Mio e/a 278.58 278.57 278.57
cost approach A/B Mio e/a 289.39 289.39 289.38

cost models are almost the same (last three lines of Table 1.6). Apparently
the impact of the different steam turbine cost functions is not strong enough
to influence the optimized structure or the operating parameters.

1.4.3 Comparison with other MINLP solvers

Finally, we depict our experience with other MINLP solvers on the prob-
lem instance from Section 1.4.1. This instance will be made available in the
MINLPLib [15]. We note that the results presented here do not allow conclu-
sions about the performance of the considered solvers in general. Since the
power plant model has been developed with having the solver LaGO in mind,
it is in some sense tailored for LaGO, e.g., a block-separable formulation where
nonconvex functions have only low dimensionality has been emphasized. For
other solvers, a different but equivalent formulation might be advantageous.
Further, the choice of LaGOs parameters is based on a long experience with
similar power plant optimization models, while for the other solvers we have
made only small adjustments to the default setting.

For this study, we have chosen the MINLP solvers that are available with
GAMS 22.6 [24]. These are AlphaECP, BARON, Bonmin, DICOPT, LIN-
DOGlobal, OQNLP, and SBB. Note that only BARON and LINDOGlobal
can explicitely handle nonconvex problems. Unfortunately, testing our model
on LINDOGlobal was not possible because the model size exceeded the re-
strictions on the GAMS/LINDOGlobal license.

We have run each solver once without providing any feasible starting point
and once with the solution discussed in Section 1.4.1 as starting point in order
to see whether the solver is able to improve it further. Recall, that this solution
has an objective function value of 236.24Mio. e/a and LaGO reported a lower
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bound of 201.59Mio. e/a when it was stopped. Each solver was run with a
time limit of three hours and a relative gap tolerance of 1%. Iteration, node,
or memory limits were turned off. The computer was a Linux 2.6 Intel Core 2
Duo T7500 laptop with 2.2 GHz clock frequency and 2 GB RAM. The results
are summarized in Table 1.7 and discussed in more detail in the following.

AlphaECP [62] implements an extended cutting plane algorithm which
guarantees global optimality for pseudo-convex problems. The algorithm con-
structs and improves a MIP approximation of the problem by constructing a
(possibly shifted) linearization of violated constraints. If a (partial) solution
of the MIP approximation is feasible to the original problem, an upper bound
might be updated. Otherwise AlphaECP can do a local search in the MINLP,
i.e., discrete variables are fixed and a NLP solver is called using the MIP
solution as starting point. When AlphaECP was run with default parameter
values no feasible point was found. Also setting the option callnlpiter to
increase the number of NLP subsolver calls did not improve the situation.

BARON [52,53] implements a branch and reduce algorithm that is related
to LaGOs methodology. Here, exact convex underestimators are constructed
for nonconvex functions using a factorable reformulation of the model. These
underestimators are used to generate a linear approximation that yields lower
bounds. Further, constraint propagation and duality techniques are used to
tighten the bounding box on the variables. On the power plant model, BARON
with default parameters spend most of the time to do probing on variable
bounds and did not find any feasible point. Thus, we rerun BARON with the
restriction to do probing for at most 10 variables (option PDo 10). Now a
feasible point with objective function value 255.13Mio. e/a was found. The
lower bound at the end of the timeperiod coincides with LaGOs lower bound
of 201.59Mio. e/a. Providing BARON with LaGOs solution as starting point
did not result in a better point.

COIN-OR/Bonmin [11] implements both outer approximation and branch
and bound algorithms. We have decided for the branch and bound algorithm
since it seems to be better suited for nonconvex problems. Here, lower bounds
are computed from solutions of the relaxed MINLP, i.e., the MINLP with
dropped integrality restrictions, and upper bounds from solving the MINLP
with fixed discrete variables. Bonmin found a feasible solution with objective
function value 242.50Mio. e/a after 41 minutes (1016 nodes). Unfortunately a
further improvement was not possible because it stopped 10 minutes later due
to a failing solve of a lower bounding problem by the NLP subsolver Ipopt.
Running Bonmin with the provided starting point and with or without the
options num_resolve_at_root and num_resolve_at_node set to 10 did not
improve the situation.

DICOPT [18] implements an extended outer approximation algorithm.
It iteratively solves MIP approximations generated by linearization of the
MINLP and NLP subproblems obtained by fixing discrete variables in the
MINLP. We have run DICOPT with stopping rule 0 and a very high value
for maxcycles, so that it does not stop before the time limit is reached.
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Unfortunately no feasible point was found. Providing a feasible starting point
did not improve the situation.

OQNLP [59] is a heuristic multistart algorithm. The solver generates start-
ing points via a scatter search or by random and uses them as starting points
for local searches. For the power plant optimization model, OQNLP did not
find any feasible point within the timelimit when run without a starting point.
However, if we provide OQNLP with the feasible starting point, it was able
to find an improved point with objective function value 235.97Mio. e/a after
a few seconds, but then was not able to improve this point further.

SBB [6] is a branch and bound algorithm similar to the one used in Bon-
min. Lower bounds are computed by solving NLP subproblems obtained by
partly fixing and partly relaxing integrality restrictions in the MINLP. If the
solution of such an NLP is feasible for the MINLP, a new upper bound has
been found. We run SBB with the option acceptnonopt 1 to increase toler-
ance with NLP solver failures. For the power plant optimization model, SBB
found a feasible solution with objective function value 236.76Mio. e/a and
reported a lower bound of 202.49Mio. e/a. When we provided LaGOs so-
lution as starting point, it found a feasible solution with objective function
value 235.73Mio. e/a and reported a lower bound of 203.91Mio. e/a. Note,
that SBBs lower bounds are only guaranteed for convex models.

Table 1.7. Best objective function values when running the power plant optimiza-
tion instance from Section 1.4.1 with different MINLP solvers and a time limit of
three hours. The third column gives the best values when a solution with objective
function value 236.24 Mio. e/a is provided as a starting point to the solver.

Solver best solution best solution with starting point
Mio. e/a Mio. e/a

LaGO 244.17 236.24
AlphaECP fail fail
BARON 255.13 236.24
Bonmin 242.50 fail
DICOPT fail fail
OQNLP fail 235.97
SBB 236.76 235.73

From the results presented here, it can be observed that algorithms based
on a linearization of nonlinear constraints like AlphaECP and DICOPT are
not suited for this problem. We presume, that this is due to the disregard of
nonconvex behavior in the construction of the MIP approximation.

On the other hand, NLP based branch and bound algorithms like Bonmin
and SBB seem to behave well on this problem instance. Even though the
NLP relaxations solved in these algorithms constitute nonconvex problems,
the NLP solver (CONOPT in the SBB run and Ipopt in the Bonmin run)
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seem to be able to find good solutions. The proper treatment of the 45 binary
variables is then the remaining task of the MINLP solver. The moderate size
of this combinatorial part (when compared to the 2204 continuous variables)
is probably advantageous for SBB and Bonmin.

The performance of BARON and LaGO indicate that the extra effort for
the convexification of nonconvex functions in order to compute true lower
bounds results in longer running times, either because the linear relaxation
does not give useful information for branching decisions or because the starting
points used for local searches are worse when compared with an NLP based
branch and bound algorithm.

Finally, the slightly improved solution points found by OQNLP and SBB
when started with LaGOs solution indicate that LaGO could benefit from a
kind of local branching heuristic that searches for solutions that improve a
recently found incumbent solution.

1.5 Conclusions

We presented a MINLP formulation of a model for a complex cogeneration
plant and the Branch and Cut based solver LaGO that is used to solve the
model. The operation under different load conditions and under uncertainties
in the investment cost are discussed. It has been shown, that the consideration
of only one typical design point is not sufficient, since the operation at some
partial-load operation points may become impossible due to thermodynamic
constraints of the plant so that heuristics methods would be required to sat-
isfy the further requirements that are posed by partial-load operation. The
presented method overcomes this problem by considering required partial-
load conditions already in the design optimization and thus allows to find
a cost optimal plant design that is feasible for the full-load and the consid-
ered partial-load cases. Of course, this enhancement comes in hand with a
significantly more complex optimization model.

Further, we have seen that the optimized design is insensitive to changes
in the steam turbine cost function. An approach to extend this sensitivity
analysis towards the computation of a design that is robust w.r.t. changes
in a cost function is to use a (weighted) average of cost function scenarios.
However, in order to avoid that this approach collapses to the computation of
a design that is just optimal for the averaged costs, one should also introduce
recourse decisions into the model, i.e., allow the off-design variables to take
different values in each considered cost scenario.

Due to the formulation of the problem as a system of equations, an ex-
tension of the model, such as the consideration of more partial-load operation
points or more complex energy conversion plants is possible without any sig-
nificant modelling effort. In particular there is no need to define a calculation
order for the streams and components because the MINLP solver optimizes
the entire problem simultaneously. We have seen that even though a typical
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engineering problem, when formulated as mathematical program, requires so-
phisticated solution algorithms, the investment in a complex MINLP model
and powerful solver can be rewarded by realistic solutions of good quality.

From the algorithmic perspective, the main difficulty of the considered
MINLP models are the nonlinearities and nonconvexities introduced by the
equations for the thermodynamic behavior of the plant. LaGO handles non-
convex functions by computing quadratic underestimators that can be con-
vexified using α-underestimators. While it is possible to compute good local
minimal points, closing the gap between lower and upper bounds, and thus
proving global optimality of the computed solutions, is still exceptional for
complex MINLPs. To bring LaGO closer to this goal, ongoing research fo-
cuses on the additional generation of quadratic underestimators during the
branch-and-bound process. Additional room for improvement is presented by
the branching and node selection rules and a further exploration of block-
separability. Also the consideration of a mixed-integer linear relaxation could
help to improve convergence.
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this paper.
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J. Lee, A. Lodi, F. Margot, N. Sawaya, and A. Wächter. An algorithmic frame-
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31. M. Jüdes and G. Tsatsaronis. Design Optimization of Power Plants by Consid-

ering Multiple Partial Load Operation Points. In 2007 ASME International Me-

chanical Engineering Congress and Exposition, November 11-15, Seattle, Wash-

ington USA, IMECE2007. ASME, 2007.
32. O. Knacke, O. Kubaschewski, and K. Hesselmann. Thermochemical Properties

of Inorganic Substances. Springer Verlag, Berlin, Germany, 1991.
33. T. Kohonen. Self-Organizing Maps. Springer Verlag, Heidelberg, 2001.
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