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Abstract We present recent developments in two-stage mixed-integer stochastic
programming with regard to application in power production planning. In particular,
we review structural properties, stability issues, scenario reduction and decomposi-
tion algorithms for two-stage models. Furthermore, we describe an application to
stochastic thermal unit commitment.
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1 Introduction

Since its beginnings in the late 1980s mixed-integer stochastic programming has
undergone a considerable development both in theory and computations. We refer
to the excellent overviews in [LoS03, Sch03, Se05] and to the very comprehensive
bibliography [vdVO7].

The aim of this paper is to look at some of the more recent developments
that bear further potential for applications to power systems modeling and opti-
mization. First, we mention new results on structures and convex approximations
[KSV06, vdV04], on estimating and approximating the underlying probability dis-
tribution [ER07, RV08], and as a consequence of the latter on scenario reduction
in two-stage mixed-integer stochastic programs [HKRO08, HKR09]. Another line of
work deals with the consequences of replacing the (traditional) expectation func-
tional in the objective by risk functionals on structural properties and algorithms
(see [ERO5, ST06] for example). Much work was directed to algorithmic issues and,
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in particular, to decomposition schemes [AEO03, ATS00, CS99, DR04, EG+07,
LuS04, NSO08b, SSV98, SeHO05, SeS06], where much is due to the pioneering work
of S. Sen and his co-workers.

In the following, we review some of the recent work. We start with a review of
structural properties, discuss stability issues, methods for scenario reduction, and
decomposition algorithms. As an illustration, we finally discuss an application to
the stochastic unit commitment problem in power production planning.

2 Models and structural properties

Stochastic programs with mixed-integer recourse arise as deterministic equivalents
of linear programs containing a random parameter vector & (varying in =) and being
of the form

min{(c,x) [ x € X, T(§)x > h(§)},

where X is a closed subset of R™, ¢ € R™, the (technology) matrix 7(&) and
the vector (&) may depend on &£. Given a realization of £, a possible viola-
tion of (&) — T(&)x < 0 is compensated by the recourse cost {g;(&),y1(&)) +

(q2(&),y2(&)), where the pair (y1(&),y2(&)) with integral y, satisfies the con-
straint Wyyy + Way, < h(&) — T(€)x. Here, the cost coefficients ¢ (&) and g2(&)
may depend on &. The modeling idea consists in adding the expected recourse cost

E((q1(&),y2(&)) + (g2(&),y2(€))) to the original cost (c,x) and in minimizing the
total cost with respect to (y;,y2). This leads to the stochastic program with mixed-
integer recourse

min [ fx.£)ap(E)
where the function fy is given by
Jo(&,x) == (c,x) + P(q(S), h(S) =T (5)x) ((x,6) ER™x E), @)

@ is the infimum function of a mixed-integer linear program

xGX}, (1)

D(u,t) :=inf{(ur,y1) + (u2,y2) | yi € R™,yo € Z"™ Wiy +Wayr <t} (3)

for all pairs (u,t) € R x R" % is a polyhedron in R®, W; and W, are (r,m;)-
and (r,my)-matrices, respectively, g(§) € R™*"2_ h(&) € R”, and the (r,m)-matrix
T (&) are affine functions of & € RY, and P is a probability distribution on the set &
(shortly P € Z(&)). Since the decisions x and y(&) are made before and after the
realization of &, they are called first and second stage decisions, respectively.

The following conditions are imposed to have the model (1) well-defined:
(C1) The matrices W and W, have only rational elements.
(C2) For each pair (x,&) € X x E it holds that #(&) — T(§)x € 7, where

T :={t€R"| Ty = (y1,y2) € R™ x Z" such that Wy, +Way, <t}.
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(C3) For each £ € E the recourse cost g(&) belongs to the dual feasible set
U = {u = (uy,up) € R™T™ | Iz ¢ R” such that W,' z = u;, W, z = up } .

(CHPe P2 (E),ie,Pc P(E)and [z ||E|IPP(dE) < +oo.

Condition (C2) means that a feasible second stage decision always exists (rel-
atively complete recourse). Both (C2) and (C3) imply &(u,t) to be finite for all
(u,t) € % x 7. Clearly, it holds (0,0) € % x .7 and ®(0,7) =0 forevery t € J.
With the convex polyhedral cone

H ={t € R" | Jy; € R™ such thatr > Wiy } = Wi (R™) + R’
one obtains the representation

T = U (Waz+ ). 4)

€7

The two extremal cases are (i) W has rank r implying 7 = R" = .7 (complete
recourse) and (ii) Wi = O (pure integer recourse) leading to 2" =R/, .

In general, the set .7 is connected (i.e., there exists a polygon connecting two
arbitrary points of .77) and condition (C1) implies that .7 is closed. If, for each
t € 7, Z(t) denotes the set

Z(t) :={z € 2™ | Jy; € R™ such that Wiy, + Woz <1},
the representation (4) implies that .7 may be decomposed into subsets of the form

T(to):={te T|Z(t)=Z(to)} = () Waz+)\( |J Waz+2)) 5

ZGZ(t()) zeZM \Z(t())

for every 1y € 7. In general, the set Z(1p) is finite or countable, but condition (C1)
implies that Z(1y) in the intersection in (5) may be replaced by a single element of
7 and Z™2 \ Z(tp) in the union by a finite subset of Z"2, respectively (see [BG+82,
Lemmas 5.6.1 and 5.6.2]). Hence, if (C1) is satisfied, there exist countably many
elements t; € .7 and z;; € Z™ for j belonging to a finite subset N; of N, i € N, such
that

T =T with T()=E+H)\ | Wazj+.2). (6)

ieN JEN;

The sets 7 (t;), i € N, are nonempty and connected (even star-shaped cf. [BG+82,
Theorem 5.6.3]), but nonconvex in general (see the illustration in Figure 1). If for
some i € N the set .7 (¢;) is nonconvex, it can be decomposed into a finite number
of subsets of 7 (t;) whose closures are convex polyhedra with facets parallel to
suitable facets of Wi (R™) or of R’, (see Figure 1). By renumbering all such subsets
(for every i € N) one obtains countably many subsets B;, j € N, of .7 which form
a partition of 7. Since the sets Z(¢) of feasible integer decisions do not change if
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Fig. 1 Tlustration of .7 (1;) (see (6)) for Wy =0and r=2,i.e., # = ]Ri, with N; = {1,2,3} and its
decomposition into the sets B, j = 1,2,3,4, whose closures are convex polyhedral (rectangular).

t varies in some Bj, the function @ (u,-) is Lipschitz continuous (with modulus not
depending on j) on B; for every j € N and every fixed u € % .

Now, let (C1)—(C3) be satisfied. Then the function @ is lower semicontinuous
and the function (u,t) — ®(u,t) from % x 7 to R has the (convex) polyhedral
continuity regions % x Bj, j € N. More precisely, the estimate

|D(u, 1) — D (@, F)| < L(max {1, |lo[|, [|7][} e — ]| -+ max {1, [[ul], ||}l = 7)) (7)

holds for all pairs (u,t), (ii,7) € % x B; and some constant L > 0. For proofs and
further details the interested reader is referred to [BG+82, Chapter 5.6].
Next, we consider the integrand

Jo(x,6) = (¢,x) + P(q(S), h(S) =T (5)x)

for all pairs (x,&) € X x & and study the continuity properties and growth behavior
of fo(x,-) on & for fixed x € X. The properties of & imply that, for every x € X,
there exists a partition {Z; ;} jen of Z given by

Ej={6eZ|nE)-T()xeB;}  (jJeN). ®)

Furthermore, the function fy(x,-) (on E) satisfies the properties

fo(x,8) = fox, &) < Lmax{L||EILIEIHIE —& (xeX.&.&€Ery), ©)
fo(x,6)] < Cmax{1, |xl[}max{L, |||’} (xeX,E€Z), (10

with some positive constants L and C. Due to (10), condition (C4) implies the ex-
istence of the integral in (1). We note that fy(x,-) is globally Lipschitz continuous
on E, ; if the recourse cost ¢(&) does not depend on &. It is even globally Lips-
chitz continuous on X if only ¢(&) depends on . In both cases |fy(x, -)| grows only
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linearly with ||&]| and a finite first order moment of P, i.e., P € £ (&) (instead of
(C4)), implies the existence of the integral.

Since the objective function of (1) is lower semicontinuous if the conditions
(C1)—(C4) are satisfied, solutions of (1) exist if X is closed and bounded. If the
probability distribution P has a density, the objective function of (1) is continuous,
but nonconvex in general. If the support of P is finite, the objective function is piece-
wise continuous with a finite number of polyhedral continuity regions. The latter is
illustrated by Fig. 2, which shows the expected recourse function

o [ @(g.hE)-TxaPE) (e 5P)
withr=5s=2,h(&) =&, m =0,W; =0,my=4,q=(—16,-19,-23,-28) " the
matrices Y

2345 2/31/3
W= (6 I 32) and 7= <1/3 2/3)*
and binary restrictions on the second stage variables as in [SSV98], but with a uni-

form probability distribution P having a smaller finite support than in [SSV98],
namely, supp (P) = {5,10,15}2.

Fig. 2 Illustration of an expected recourse function with pure 0 — 1 recourse, random right-hand
side and discrete uniform probability distribution.

3 Stability

In this section, we review stability results for mixed-integer two-stage stochastic
programs (1), i.e., results on the dependence of their solutions and optimal values
on the underlying probability distribution P. Such results also provide information
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how an underlying probability distribution should be approximated such that ap-
proximate solutions and optimal values get close to the original ones.
In this context it is well known that the behavior of the (first stage) solution set

sP) = {xex | [ ntmepras) = |

with respect to changes of P requires knowledge on the growth of the objective
function

x = Fp(x) :=E(fo(x,&)) = ./Efo(x’é)P(dé)

near S(P). Here, v(P) denotes the infimum of the objective function or optimal

value, i.e.,
v(P) ::inf{/Efo(x,ﬁ)P(dg) xEX}.

However, the growth behavior of Fp depends essentially on properties of the under-
lying probability distribution P. The situation is different for optimal values v(P).
Their behavior with respect to changes of P depends essentially on structural prop-
erties of the function f;, which are well studied (cf. Section 2).

It is shown in [RV08] that the following distances of probability distributions are
important for mixed-integer two-stage stochastic programs:

8a(P.0) p{| [ e - [ f(é)Q(dé)‘ ' fesdE) s,

where ¢ € {1,2} and 2 is a set of convex polyhedra, which contains the closures of
Eyj, J €N, x € X (see (8)), and F¢(Z) contains all functions f : & — R such that

£(8)] < max{1,[|E]|} and |£(&) — f(E)] < max{L, & €N }HIE —E

holds for all &,€ € Z. While the set .%;(Z) of functions has its origin in property
(9) of the integrand fj, but depends on the specific structure of the second stage
program only with respect to £ € {1,2}, the class & of convex polyhedra strongly
depends on that structure.

If the conditions (C1)—(C4) are satisfied and X is closed and bounded, there exists
a constant L > 0 such that the estimate

v(P) =v(Q)| < Lop(Sr(P,Q)) (12)

holds for every Q € () with £ € {1,2} and £ =2 if € enters g(&) and, in addi-
tion, h(&) or T(&). Here, the function @p is defined by @p(0) =0 and

‘= in r+1 ¢ .
or(1) = f{R R N P(dé)} (t >0)

R>1
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The function characterizes the tail behavior of P and is continuous at t = 0. If P has
a finite pth moment, i.e., if [z ||&]|PP(d&) < oo, for some p > ¢, the estimate

op(t) <CLITT (120)

is valid for some constant C > 0 and if = is bounded, the estimate (12) simplifies to

[v(P) —v(Q)| < LE;,%(P,Q).

If the set & C R® belongs to A, we obtain from (11) by choosing B := = and f =1,
respectively,

max{{,(P,Q),az(P,0)} < & 2(P,0) (13)

for all P,Q € &(&). Here, {, and 0,4 denote the ¢th order Fortet-Mourier metric
(see [Ra91, Section 5.1]) and the polyhedral discrepancy

6(r.0) = s | [ 1@ - [ r@0ws)|| re s}, av
05(P.Q) = sup |P(B) — O(B)], (15)

respectively. Hence, convergence of probability distributions with respect to {; »
implies their weak convergence, convergence of /th order absolute moments, and
convergence with respect to the polyhedral discrepancy ¢tg. For bounded X the
technique in [Sch96, Proposition 3.1] can be employed to obtain

{.#(P.Q) < Cog(PO)F  (POE P(E)) (16)

for some constant Cy > 0. In view of (13) and (16), the metric Q 2 1s stronger than
0.z in general, but in case of bounded = both distances metrize the same conver-
gence on Z(%).

For more specific models (1), improvements of the stability estimate (12) may
be obtained by exploiting specific recourse structures, i.e., by using additional in-
formation on the shape of the sets B;, j € N, and on the behavior of the function ¢
on these sets. This may lead to stability estimates with respect to distances that are
(much) weaker than Cp(g For example, if W) = 0, X is rectangular, 7 is fixed and
some components of A(-) coincide with some of the components of &, the closures
of &, j,x € X, j € N, are rectangular subsets of Z, i.e., belong to

PBrect := {11 xIhx---xI | 0#1;is aclosed interval in R, j = 1,...,5} a7

and the stability estimate (12) is valid with respect to { ... As shown in [HKR09]
convergence of a sequence of probability distributions with respect to {; .., is
equivalent to convergence with respect to both {; and oz, ,. If, in addition to the
previous assumptions, ¢ is fixed and = is bounded, the estimate (12) is valid with
respect to the rectangular discrepancy o5_ . (see also [Sch96, Section 3]).

rect
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4 Scenario reduction

A well known approach for solving two-stage stochastic programs computationally
consists in replacing the original probability distribution by a discrete distribution
based on a finite number of scenarios. Let P be such a discrete distribution with
scenarios &' and probabilities p;, i = 1,...,N. The corresponding stochastic pro-
gramming model is of the form

N o W+ Wy <h(ED) —T(EN)x
min { (e, x) + ¥ pi((q1(E7),31) + (q2(E7),35)) [ € R™ yh € Z™ i=1,...,N,
i=1 xeX

It may turn out that the computing times for solving the resulting mixed-integer lin-
ear programs are not acceptable. In such a case one might wish to reduce the number
of scenarios entering the stochastic program. In [DGR03, HRO7] a stability-based
approach for scenario reduction in two-stage models without integrality require-
ments is developed. This approach suggests to look at stability results for optimal
values and to use the corresponding distance of probability distributions for deter-
mining discrete distributions based on a smaller and prescribed number of scenarios
as best approximations of P. According to the stability estimate (12) in Section 3,
the distances {; & or 0 (if Z is bounded) appear as the right choice, where # is a
set of convex polyhedra that depend on the structure of the stochastic program (1).

In [HKROS] the scenario reduction approach is elaborated for a% and a relevant
set A of convex polyhedra. The numerical results show that the complexity of sce-
nario reduction algorithms increases if % gets more involved. To avoid this effect,
the distance §; 4, ., or, equivalently,

dy(P,Q) := Aoz, (P.Q) + (1-24)5(P,Q) (18)

for some A € (0, 1) is considered in this section (and in [HKR09b]).
Let Q, denote a probability distribution whose support supp(Q;,) contains the
following subset of {E1,... ENY:

supp(Qy) = {&'lie {1,...,N}\J} and JC{l,...,N}.

Let g; (i ¢ J) denote the probability of scenario &' of Q;. Now, the aim is to deter-
mine Q; such that the distance d; (P,Qy) is minimal, i.e., for arbitrary subsets J of
{1,...,N}, we are interested in

DJ3_min{d7L(PvQJ) 6]1'2071'%1,2611'—1}' (19)

i¢J

In the following, we show that D; can be computed as optimal value of a linear
program. To this end, we assume without loss of generality that J = {n+1,...,N},
i.e., supp(Qy) = {&!',...,&"} for some 1 < n < N. We consider the system of index
sets
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I = {I(B) :={i€{l,...,N} | §' € B} | B € Hreat}
and obtain the following representation of the rectangular discrepancy

O (F,Qs) = sup |P(B)—Qy(B)| = max
BEBrect fﬁrecl

= mln{

Since the set .7, may be too large to solve the linear program (21) numerically,
we consider the system of reduced index sets

Zpl Z qj

i€l jeln{l,....n}

Zjelﬂ{l ,,,,, nyqdj > Sta— ZielPh Ie ]ﬂrect } 1)
Z]GIQ{I ..... n}4j <to+Yiepi L€ ‘ﬂv%’recl

(20)

I ={I(B)N{1,...,n} | B € Brect}

and the quantities

y’* = max{Zpi

icl

1€ Iz IN{1,....n} I*}

iel

Vi 1= min{Zpi

Ie Iy In{l,... n} :1*}

for every I* € (Z%m[. Since any such index set I* corresponds to some left-hand side

of the inequalities in (21), ¥ and 9+ correspond to the smallest right-hand sides in
(21). Hence, the rectangular discrepancy may be rewritten as

—Yierqj <tg— Y, I'e I e } (22)
Ljerqj Statm, I" €75

rect

ae@rect (1)7 QJ) = min {ta

Since the number of elements of .7,  is at most 2" (compared to 2¥in Sy ),
passing from (21) to (22) indeed drastlcally reduces the maximum number of in-
equalities and may make the linear program (22) numerically tractable.

Due to duality arguments, the Fortet-Mourier distance (P, Qy) (see (14)) al-
lows the representation as linear program (cf. [HRO7])

Nmii=q,j=1,...
Cg(P,QJ)inf{ZZn,Jqé é)’nijzo’ Zrzlzlnl,j_q./’.]_ ) }G}

i=1] j:]rli,j_pivl_lv'”a

where ¢;(&, &) := max{L,[|] 1, |1 }1E - & forall &,E € T = {&!,...,EM}

and ¢, denotes the reduced costs

¢(&.8): lnf{ Y (&1, E%)

KeN,je{l,....N}E0=¢, él’(é}
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Hence, extending the representation (22) of (g, we obtain the following linear
program for determining D, and the probabilities g;, j = 1,...,n, of the discrete
reduced distribution Qj,

tOhtC >0, qj >0, Z:’:lqj =1,
nij>0i=1,....N,j=1,....n,
te > XN Xy €L 8y,
D]:min A«ta—‘r(l—l)té Zﬂ:lnij:piyi:17--.,N, (23)
Yiinij=gqj,j=1,...,n,
_ZjGI*LIj Sta—]/‘[ ANS j%recl
Yjerdj Stat v I" € I5

While the linear program (23) can be solved efficiently by available software, the
determination of the index set .7 and the coefficients ¥, 1+ is more intricate.
It is shown in [HKROS, HKR()9b Section 3] that the parameters .#;, and Y,
¥+ can be determined by studying the set % of supporting rectangles. A rectangle B
in Brect is called supporting if each of its facets contains an element of {&;,...,&,}
in its relative interior (see also Fig. 3). Based on % the following representations are

Fig. 3 Non-supporting rectangle (left) and supporting rectangle (right). The dots represent the
remaining scenarios &!,... &" for s = 2.

valid according to [HKRO8, Prop. 1 and 2]:

I = U {1, o0} |Ujer {7} ={&",....&"} NintB }

Be#
Y= max {P(intB) | B€ %, Ujer-{E/} = {&',....&"}NintB }

Y+ :Zpi where [ := {ie{l,...,N} ‘%ggéljgéllgﬂrle%fglj’l:ans}

i€l

for every I* € fg’}m. Here, int B denotes the interior of the set B.
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An algorithm is developed in [HKR09b] that constructs recursively /-dimensional
supporting rectangles for / = 1,...,s. Computational experiments show that its run-
ning time grows linearly with N, but depends on n and s via the expression (";l)s.
Hence, while N may be large, only moderately sized values of n given s are realistic.

Since an algorithm for computing D, is now available, we finally look at deter-
mining a scenario index set J C {1,...,N} with cardinality #J = n such that Dy is

minimal, i.e., at solving the combinatorial optimization problem
min{D, |J C {l,...,N},#J =n} 24)

which is known as n-median problem and as NP-hard. One possibility is to refor-
mulate (24) as mixed-integer linear program and to solve it by standard software.
Since, however, approximate solutions of (24) are sufficient, heuristic algorithms
like forward selection are of interest, where u; is determined in its kth step such that
it solves the minimization problem

min{DJ[k—l]\{u} ‘ ue J[kfl]} ,

where JI% = {1,... N}, JW .= JIk=1\ {1} (k=1,...,n) and JI .= {1,... N} \
{u1,...,u,} serves as approximate solution to (24). Recalling that the complexity of

0 0.2 04 0.6 0.8 1

Fig. 4 N = 1000 samples & from the uniform distribution on [0, 1]? and n = 25 points E%, k =
1,...,n, obtained via the first 25 elements zx, k = 1,...,n, of the Halton sequence (in the bases 2
and 3) (see [Ni92, p. 29]). The probabilities g of £, k =1,...,n, are computed for the distance
d; with A =1 (gray balls) and A = 0.9 (black circles) by solving (23). The diameters of the circles
are proportional to the probabilities g, k = 1,...,25.
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evaluating D i), p,y for some u € J =11 is proportional to (*3')" shows that even

the forward selection algorithm is expensive.

Hence, heuristics for solving (24) become important that require only a low num-
ber of D, evaluations. For example, if P is a probability distribution on [0, 1]* with
independent marginal distributions P;, j = 1,...,s, such a heuristic can be based on
Quasi-Monte Carlo methods (cf. [Ni92]). The latter provide sequences of equidis-
tributed points in [0, 1]* that approximate the uniform distribution on the unit cube
[0,1]*. Now, let n Quasi-Monte Carlo points z¥ = (zll‘, L) e01) k=1,...,n,
be given. Then we determine

Vo= (FERTI@) k=1,m),

where Fj is the (one-dimensional) distribution function of P}, i.e.,

N
Fi(z)=Pi((—=2)= ), p  (z€R)

i=1,8i<z

and ijl (1) :=inf{z € R | Fj(z) >t} (t € [0,1]) its inverse (j = 1,...,s). Finally, we
determine u; as solution of
min & ||
ueJlk=1]

and set again JIX := J&=1\ {4} for k = 1,...,n, where J¥ = {1,...,N}. Figure
4 illustrates the results of such a Quasi-Monte Carlo based heuristic and Figure 5
shows the discrepancy 0, for different n and the running times of the Quasi-
Monte Carlo based heuristic.

discrepancy time

600

400

200

Fig. 5 Distance o, between P (with N = 1000) and equidistributed QMC-points (dashed),
QMC-points, whose probabilities are adjusted according to (23) (bold), and running times of the
QMC-based heuristic (in seconds).
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5 Decomposition algorithms

When the size of an optimization problem becomes intractable for standard solution
approaches, a decomposition into small tractable subproblems by relaxing certain
coupling constraints is often a possible resort. The task of the decomposition algo-
rithm is then to coordinate the search in the subproblems in a way that their solutions
can be combined into one that is feasible for the overall problem and has a “good”
objective function value. Often, the algorithm also provides a certified lower bound
on the optimal value which allows to evaluate the quality of a found solution. Since,
on the one hand, mixed-integer stochastic programs easily reach a size that is in-
tractable for standard solution approaches, but, on the other hand, are also very struc-
tured, many decomposition algorithms have been developed [LoS03, Sch03, Se05].
In the following, we discuss some of them in more detail.
Let us assume that the set of first stage feasible solutions X is given in the form

X={xeZ™xR"" | Ax < b},

where mg denotes the number of first stage variables with integrality restrictions, A
is a (rp,m)-matrix, and b € R, Further, we denote by

X:={xeR"|Ax< b}
the linear relaxation of X. We recall the value function (3),
D (u,t) = inf{(ur,y1) + (u2,y2) [ y1 € R™ ,y2 € Z™ , Wiy, + Way, <1},

and define the expected recourse function of model (1) by

¥ (x) :=/54’(61(5)7’1(5)—T(5)X)P(d5) (x€X).

For continuous (m, = 0) stochastic programs, the Benders decomposition is an
established method [VSW69, Bi85]. It decomposes the decision on the first stage
from the recourse decisions on the second stage by replacing the value function
@(u,t) in (1) by an explicit approximation based on supporting hyperplanes. Un-
fortunately, Benders Decomposition relies heavily on the convexity of the value
function # — @(u,t). Thus, in the view of Section 2, it cannot be directly applied to
the case where discrete variables are present.

However, there are several approaches to overcome this difficulty. One of the first
is the Integer L-shaped method [Lal.93], which assumes that the first stage problem
involves only binary variables. This property is exploited to derive linear inequalities
that approximate the value function @ (u,t) pointwise. While the algorithm makes
only moderate assumptions on the second stage problem, its main drawback is the
weak approximation of the value function due to lacking first order information
about the value function. Thus, the algorithm might enumerate all feasible first stage
solutions in order to find an optimal solution.
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A cutting-plane algorithm is proposed in [CT97]. Here, the deterministic equiv-
alent of (1) is solved by improving its linear relaxation with lift-and-project cuts.
Decomposition arises here in two ways. First, the linear relaxation (including addi-
tional cuts) is solved by Benders Decomposition. Second, lift-and-project cuts are
derived scenariowise. Further, in case of a fixed technology matrix T(-) = T, cut
coefficients that have been computed for one scenario can also be reused to derive
cuts for other scenarios. This algorithm can be seen as a predecessor of the dual
decomposition approach presented in [SeH05]. While the cuts in [CT97] include
variables from both stages, [SeHO05] extends the Benders Decomposition approach
to the mixed-integer case by sequentially convexifying the value function @ (u,r). It
is discussed in detail in Section 5.2.

In [KSVO06] it is observed, that even though the value function ®(u,z) might
be nonconvex and difficult to handle, under some assumptions on the distribu-
tion of &, the expected recourse function ¥(x) can be convex. Starting with sim-
ple integer recourse models and then extending to more general classes of prob-
lems, techniques to compute tight convex approximations of the expected recourse
function by perturbing the distribution of & are developed in a series of papers
[KSV06, vdV04, vdV05]. We sketch this approach in more detail in Section 5.1.

In the case that the second stage problem is purely integer (m; = 0), the value
function @ (u,t) has the nice property to be constant on polyhedral subsets of % x
7. Therefore, in case of a finite distribution, also the expected recourse function
Y¥(x) is constant on polyhedral subsets of X. This property allows to reduce the
set X to a finite set of solution candidates that can be enumerated [SSV98]. Since
the expected recourse function ¥(x) has to be evaluated for each candidate, many
similar integer programs have to be solved. In [SSV98] a Grobner basis for the
second stage problem is computed once in advance (which is expensive) and then
used for evaluation of ¥ (x) for every candidate x (which is then cheap).

Another approach based on enumerating the sets where ¥(x) is constant is pre-
sented in [ATS00]. Instead of a complete enumeration, here a branch-and-bound
algorithm is applied to the first stage problem to enumerate the regions of constant
¥ (x) implicitely. Branching is thereby performed along lines of discontinuity of
¥ (x), thereby reducing its discontinuity in generated subproblems.

While all approaches discussed so far explore the structure of the value or ex-
pected recourse function in some way, Lagrange decomposition is a class of algo-
rithms where decomposition is achieved by relaxation of problem constraints. By
moving certain coupling restrictions from the set of constraints into the objective
function as penalty term, the problem decomposes into a set of subproblems, each
of them often much easier to handle than the original problem. This relaxed problem
then yields a lower bound onto the original optimal value, which is further improved
by optimization of the penalty parameters. Since, in general, a solution of the re-
laxed problem violates the coupling constraints, heuristics and branch-and-bound
approaches are applied to obtain good feasible solutions of the original problem.
While there are several alternatives to choose a set of coupling constraints for relax-
ation, each one providing a lower bound of different quality [DR04], in general, sce-
nario and geographical decomposition are the preferred strategies [CS99, NROO]. In



Progress in two-stage mixed-integer stochastic programming 15

scenario decomposition, nonanticipativity constraints are relaxed, so that the prob-
lem decomposes into one deterministic subproblem for each scenario. We discuss
this approach in more detail in Section 5.3. In geographical decomposition, model-
specific constraints are relaxed, which leads to one subproblem for each compo-
nent of the model. Even though each subproblem then corresponds to a stochastic
program itself, its structure often allows to develop specialized algorithms to solve
them very efficiently. Similarly, the modelers knowledge can be explored to make
solutions from the relaxed problem feasible for the original problem. Geographical
decomposition is demonstrated for a unit commitment problem in Section 6.

5.1 Convexification of the expected recourse function

In a simple integer recourse model, the second stage variables are purely integer
(m; = 0) and are partitioned into two sets y*,y~ € Z*_ with 2s = ms. The cost-vector
q(&) = (q",q) and technology matrix T(&) =T are fixed, r = 2s, h(§) = &, and
the value function takes the form

y+ Zé_Tx7
D(q(§),n(&) —T(§)x) =infq (g™, y") +{g~y") y = —(§—Tx)
yhyT € Zy

The simple structure of the value function allows to write the expected recourse
function in a separable form,

() = 2%*1&[&3 — (T ]+ 4 ElE— (T

where [ o] denotes the smallest integer that is at least ¢, | o¢| the largest integer that
is at most @, ¢ = max(0, &), and @~ = min(0, &). Thus, it is sufficient to consider
one-dimensional functions of the form Q(z) := ¢ E¢[[{ —z]*] + ¢ E¢[|{ —2z] ]
(with § a random variable).

In [KSV06], convex approximations of Q(z) are derived from a piecewise linear
function in the points (z,0(z)), z € & +Z, where o € [0,1) is a parameter. Further,
if ¢ has a continuous distribution, then the approximation of Q(z) can be realized as
expected recourse function of a continuous simple recourse model,

9 q”
qt+q7’

0u(2) =4 B, [(Ca —2) "1 +q B, [(La —2) 7]+

where (g is a discrete random variable with support in & + Z [KSV06].

The results in [KSVO06] are extended to derive convex approximations of the
expected recourse function for models of the form (1), where m; =0, h(&) =&, and
q(&)=qgand T(E) =T are fixed [vdV04]. Further, the parameter o can be chosen
such that the derived convex approximation underestimates the original expected
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recourse function. Since this convex underestimator is at least as good as an LP-
based underestimator (obtained by relaxing the integrality condition on y) and even
yield the convex hull of ¥(x) in the case that T is unimodular, it can be utilized to
derive lower bounds in a Branch-and-Bound search for a solution of (1).

Another extension of the methodology from [KSVO06] considers mixed-integer
recourse models where » = 1 and the value function is semi-periodic, c.f. [vdV05].

5.2 Convexification of the value function

From now on we assume that the random vector & has only finitely many outcomes
&' with probability p; >0, i = 1,...,N. Thus, we can write the expected recourse
function as

¥(x) = ;pi¢(4(§i),h(5i) ~T(E))  (eX).

As discussed in Section 2, the nonconvexity of the function @ (u,t) forbids a rep-
resentation by supporting hyperplanes as used in a Benders decomposition. How-
ever, while in the continuous case (my = 0) the hyperplanes are derived from dual
feasible solutions of the second stage problem, it is conceptually possible to carry
over these ideas to the mixed-integer case by introducing (possibly nonlinear) dual
price functions [TiW81]. Indeed, Chvatal and Gomory functions are sufficiently
large classes of dual price functions that allow to approximate the value function
®(u,t) [BJ82]. These dual functions can be obtained from a solution of (3) with a
branch-and-bound or Gomory cutting plane algorithm [Wo81]. In [CT98] this ap-
proach is used to carry over the Benders decomposition algorithm for two-stage
linear stochastic programs to the mixed-integer linear case by replacing the hyper-
plane approximation of the expected recourse function by an approximation based
on dual price functions. While [CT98] does not discuss how the master problem
with its (nonsmooth and nonconvex) dual price functions can be solved, the series
of papers [SeHO05, NSO8b, SeS06, NS05, NS08a] show that a careful construction
of dual price functions combined with a convexification step based on disjunctive
programming allows to implement an efficient Benders decomposition for mixed-
integer two-stage stochastic programs.

We consider the following master problem obtained from (1) by replacing the
value functions x — ®(q(&%), h(E') — T(E')x) by approximations @; : R™ — R:

N
min { (c.x)+ Y pi®i(x)
i=1

xeX}, (25)

where each function ©;(-), i =1,...,N, is given in the form

@,-(x) = max{min{m(x), . nk(x)} ‘ (nl (), R T]k()) € Ci}7 X e X,
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and atuple n := (N1(-),...,Mk(+)) € C; consists of k (where k is allowed to vary with
n) affine linear functions n;(-) : R — R, j = 1,...,k. The tuple 7 takes here the
role of an optimality cut in Benders decomposition for the continuous case. That is,
each ) € C; is constructed in a way such that for all x € X

D(q(EN),h(E) —T(E")x) > n;(x) for atleastone j € {1,....k}.  (26)

Hence, we have @ (g(&7),h(E) — T (E)x) > O;(x) and the optimal value of problem
(25) is a lower bound to the optimal value of (1). Before discussing the construction
of the tuples 1, we shortly discuss an algorithm to solve problem (25).

5.2.1 Solving the master problem

Note that problem (25) can be written as a disjunctive mixed-integer linear problem:

N

min { (e,x) + ZP:’@:’
i—1

=

xeX, 27)
Giznl(x)\/‘..\/Gian(x),neCi,i:l,.‘.,N ’

Problem (27) can be solved by a branch-and-bound algorithm [NSO8b]. To this
end, assume that for each tuple 1 € C; an affine linear function 7j(-) : R — R
is known which underestimates each n;(-), j=1,...,k, on X, i.e., n;(x) > f(x) for
j=1,...,kand x € X. f](-) allows to derive a linear relaxation of problem (27):

N
min { (e,x) + Zp,ﬂi
=1

i=

x€X, 6, >7x), neC, i:l,...,N}. (28)

Let (%, é) be a solution of (28). If £ is feasible for (27), then an optimal solution
for (27) has been found. Otherwise, X either violates an integrality restriction on a
variable x;, j = 1,...,mo, or a disjunction 6; > min{n; (x),...,Nk(x)} for some tu-
ple n € C; (with k > 1) and some scenario i. In the former case, that is, £; € Z,
two subproblems of (28) are created with additional constraints x; < |£;] and
xj > [%;], respectively. In the latter case, the tuple 7 is partitioned into two tuples
n' = (m(),...,m () and 0" = (M1 (),...,Mm(-)), 1 <K <k, corresponding
linear underestimators 7)’(+) and f)”(+) are computed (where i)' = 1y if ¥’ = 1 and
7" = ng if ¥ = k— 1), and two subproblems where the tuple 1 € C; is replaced by
1’ and ", respectively, are constructed. Next, the same method is applied to each
subproblem recursively. The first feasible solution for problem (27) is stored as “in-
cumbent solution”. In the following, new feasible solutions replace the incumbent
solution if they have a better objective value. If a subproblem is infeasible or the
value of its linear relaxation exceeds the current incumbent solution, then it can be
discarded from the list of open subproblems. Since in each subproblem the num-
ber of feasible discrete values for a variable x; or the length of a tuple 1 € C; is
reduced with respect to the ascending problem, the algorithm can generate only a
finite number of subproblems and thus terminates with a solution of (27).
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5.2.2 Convexification of disjunctive cuts

A linear function 7} (-) in (28) that underestimates min{n;(-),...,nx(:)} can be con-
structed by means of disjunctive programming [Ba98, SeHO5]: For a fixed scenario
index i and a tuple ) € C;, an inequality 6 > 7 (x) is valid for the feasible set of
(27), if it is valid for Uljzl {(x,0) e R™" | x € X,0 >n;(x)}. That is, we require

f(x) < njx) forallxe X, j=1,...,k (29)

We write 1] (x) = fo + (fx,x) and 0;(x) =10+ (N;.x,x) for some 7o, N0 € R and
M Mjx €R™, j=1,...,k Then (29) is equivalent to

Mo —"Nj0 Smin{<n/7x_ fx,x) | x € R™, Ax < b}
:max{(%,b} | lj € RV_O’ ATAJ' =MNjx— T_"x}

Therefore, choosing A; € R and 7], € R” such that ATM + Tx = Njx, and setting
Mo :=Mjo+min{(A;,b)|j =1,...,k} yields a function 7 (x) that satisfies (29).

[SeHO05] note, that given an extreme point £ of X, the linear underestimator 7 ()
can be chosen such that 7] (£) = min{n; (£),..., N (%) }. Thus, if only extreme points
of X are feasible for (1), then it is not necessary to branch on disjunctions 7 to solve
(27). This is the case, e.g., if all first stage variables are restricted to be binary.

5.2.3 Approximation of @ (u,r) by linear optimality cuts

The simplest way to construct a tuple 11 with property (26) is to derive a supporting
hyperplane for the linear relaxation of ®(u,t), which we denote by

D@ (u,t) :=min{(ur,y1) + (u2,y2) | y1 € R™, yo e R™, Wiy +Wayo <t}. (30)

It is well known, that @(u,t) is piecewise linear and convex in ¢. Thus, if, for fixed
(4,f) € % x T, # is a dual solution of (30), we obtain the inequality ®(i2,t) >
D(4,f) + (&t — ) = (R,t) (t € 7). Letting &i = q(&') and f = h(E') — T(E')% for a
fixed scenario &' and first stage decision £ € X, we obtain

P(q(&"),n(&") =T (E)x) = (4, h(E") — T (E)x) = M (x). G
Since ®@(u,t) > ®(u,t), (31) yields the optimality cut n := (n1(-)) (i.e., k = 1).

Due to the polyhedrality of @ (u,?), a finite number of such cuts for each scenario is
sufficient to obtain an exact representation of @ (u,t) in the master problem (27).

5.2.4 Approximation of ®(u,t) by lift-and-project

However, in order to capture the nonconvexity of the original value function ®(u,1),
nonconvex optimality cuts are necessary, i.e., tuples 1 of length k& > 1. For the case
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that the discrete variables in the second stage are all of binary type, the follow-
ing method is proposed in [SeHO5]: Let X € X be a feasible solution of the master
problem (25), let ()7‘1 ,)75) be a solution of the relaxed second stage problem (30) for
u=gq(EYandt=h(E)—T(EN% i=1,...,N.If§, € Z™ foralli=1,...,N, then
a linear optimality cut (31) is derived, c.f. (31). Otherwise, let j € {1,...,m;} be an
index such that 0 <y ; < 1. We now seek for inequalities (7}, y1) + (75, y2) > 7 (x),
i=1,...,N, which are valid for (3) for all x € X, but cut off the solution yi from
(30) for at least one scenario { with fractional )7’2 j That is, we search for inequalities
that are valid for the disjunctive sets

Wiyt +Ways <1, } U {y € R+

c Rmﬁ—mg
{y y2,j <0

Wiy +Way, <1,
L (32
-y, < —1 (32)

where t = h(§') — T(')%,i=1,...,N. Observe, that points with fractional y, ; are
not contained in (32). With an argumentation similar to the derivation of 7] (-) before,
it follows that, for fixed x, valid inequalities for (32) are described by the system

WA =, WA, =, (33a)

Wszlli,l ""f’jlf‘?z =m, WzTMJ - ejaé,z =m, (33b)
(h(E) =T (&)X, Al 1) = my(x),  (M(E") —T(E)x, A3, —Ayn) > my(x),  (33c)
A1 ER A, ER, M ER A, R, (33d)

where e; € R"2 is the j-th unit vector. Observe further, that the coefficients in (33a)
and (33b) (i.e., Wi, Wa, e;) are scenario independent. Thus, it is possible to use
common cut coefficients (71, ;) = (7}, 7}) for all scenarios, thereby reducing the
computational effort to the solution of a single linear program [SeHO0S5]:

M, Ao €RE, A, Aop €R

m e R™M, m e R™, my(%X) € R,

W Ay =m0, Wy A+ ejdin = m,
W Ao =1, Wy Aot —ejhap = M,
(h(ED) =T (&%, A1) > my(x),
(h(E) —T(E)x, A1) — Aap > my(F),
1710 <1, [|M2]le0 < 1, | m5(5)| < 1,
i=1,....N

pi(my(%) = (m1,54) — (m2, %))

M=

max

Il
R

The objective function of this simple recourse problem maximizes the average vi-
olation of the computed cuts by (¥},5;). The functions my(-), i = 1,...,N, with
(m1,y1) + (m2,y2) > m(x) for all x € X is derived from a solution of this LP as

7y (x) = min{(A(E) = T()x, Ara), (h(E) = T(E)x, Aot) — A2z} (34)

Adding these new cuts to (30) for u = g(&%) and t = h(E') — T (€))%, i=1,...,N,
yields the updated second stage linear relaxations
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4 ) Wiyt +Ways < h(&) —T(§')%
min ¢ (q1(8"),y1) +(q2(8"),y2) | —(m1,31) — (M2, ¥2) < —7H(X) . (35)
Y1 € R™ 2 € R™2

A dual solution (U, ly) of (35) can then be used to derive the inequality

P(q(&),h(E) ~T(EN)x) = (1, h(&") = T(&")x) — pomf (x).

However, the nonconvexity of the right-hand side 7176 (x) yields a nonconvex optimal-
ity cut 7 := (11(-),m2(+)), where

M (x) :==(u — oA 1,h(E") — T(E")x),
M2(x) =1t — poAa,1,h(E") — T (E")x) + poAa.

In a next iteration, when the second stage problems are revisited with a different first
stage solution X, the updated relaxation (35) takes the place of the original relaxation
(30). Since the functions 71?6(-) are known, the right-hand side of the added cut in (35)
is updated when x changes.

5.2.5 Approximation of ®(u,r) by branch-and-bound

For the general case where the discrete second stage variables can also be of integer
type, the second stage problem (3) can be solved by a (partial) branch-and-bound
algorithm and a (nonlinear) optimality cut 1) can be derived from the dual solutions
of the linear programs in each leaf of the branch-and-bound tree [SeS06]: Let X €
X be again a feasible point to problem (25) and fix a scenario i. Assume that (3)
with i = g(&') and 7 = h(E') — T(E")x is (partially) solved by a branch-and-bound
algorithm. Denote by 2 the set of terminal nodes of the generated branch-and-
bound tree. For any node ¢ € 2 let )3 , and yj , denote the vectors that define lower
and upper bounds on the y, variables in the subproblem at node g. Then the LP
relaxation of (3) for node g € 2 is given as

: ~ — mi+m T 2 S ygu’
min § (i1, y1) + (it2,y2) |y € R™" Wiyr +Wayp <7, 1" Z77% . (36)
2= =Yy

We assume, that subproblems have been pruned if they are infeasible or their lower
bound exceeds a known upper bound. Thus, all terminal nodes are associated with
a feasible LP relaxation. The dual problem to (36) is

M, € R Wyl pt-my — my = it

cR", W, 'u=a
max{<ui>+<7ru,y§,u>—<7rz,y;,> H LB “’}, (37)

where we assume that a dual variable 7 ;, 7, ; is fixed to O if the corresponding
bound 3, ;,¥5, ; is —eo or 4o, respectively, j = 1,...,m>. Based on a dual solution
(ud, 7th, m) of (37), a supporting hyperplane of each nodes LP value function can
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be derived, c.f. (31). Since the branch-and-bound tree represents a partition of the
feasible set of (3), it allows to state a disjunctive description of the function ¢ —
&(ii,t) by combining the LP value function approximations in all nodes g € 2:

(i) > (u?, 1) +(mf,y5 ) — (m/,»3,) foratleast one g € 2. (38)

This result directly translates into a nonlinear optimality cut 1 := (11(-), ..., M4("))
by letting 1q(x) := (U9, h(E") = T (§")x) +(ml,¥5 ) — ()3 )

5.2.6 Full Algorithm

We can now state a full algorithm for the solution of (1):

1. Solve the master problem (27) by branch-and-bound. If it is infeasible, then (1)
is infeasible. Otherwise, let (¥,0) be a solution of (27).

2. Solve (3) for each scenario i = 1,...,N. Let ¢; := ®(q(&'),h(EF) — T(E))X) be
the optimal value of (3) for the first stage decision X in scenario i.

3. For scenarios i where ¢; > 6;, derive an optimality cut 1 of the value func-
tion x — @ (q(&"),h(ET) — T (E')x) either via linearization of ®(u,t) (see (31)),
via lift-and-project (Section 5.2.4), or from a (partial) branch-and-bound search
(Section 5.2.5). Add n to C; in (27).

4. If no new tuples 1) have been constructed, i.e., the master problem has not been
updated, then finish: ¥ is an optimal solution to (3). Otherwise, go back to 1.

Some remarks are in order:

e At the beginning, the sets C; are empty, i.e., no information about the value func-
tion @ (u,t) is available in (27). Thus, (27) should be solved either with the vari-
ables 6; removed or bounded from below by a known lower bound on & (u,7).

e In the first iterations, when almost no information about ®(u,7) is available, it is
unnecessary to solve the master problem (27) and the second stage problems (3)
to optimality. Instead, at first it is more efficient to ignore the integrality condi-
tions and to construct a representation of the LP value function ®(u,) by a usual
Benders decomposition. Later, partial solves of (27) and the introduction of non-
linear optimality cuts 7] into (27) based on lift-and-project or partial branch-and-
bound searches should be performed to capture the nonconvexity of @ (u,t) in the
master problem. Finally, to ensure convergence, first and second stage problems
need to be solved to optimality, see also [SeH05, NSO8b].

5.2.7 Extension to multistage problems

While the algorithms discussed so far allow an efficient extension of the Benders
decomposition to two-stage mixed-integer stochastic programs, a further extension
to the multistage case seems possible. While in the two-stage case we have a non-
convex value function only in the first stage, in the multistage setting we are faced
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with such a function in each node of the scenario tree other than the leaves. That
is, the master problems in each node before the last stage are of the form (27). Ap-
proximation of the value function of such a master problem then requires to take
the nonlinear optimality cuts which approximate the value functions of successor
nodes into account. For that matter, we have seen how such a master problem can
be solved by branch-and-bound (Section 5.2.1, [NS08b]) and how an optimality cut
can be derived from a (partial) branch-and-bound search (Section 5.2.5, [SeS06]).

However, the efficiency of such an approach might suffer under the large number
of disjunctions that are induced from optimality cuts on late stages into the master
problems on early stages. That is, while in the two-stage case the disjunctions in
(27) are caused only by integrality constraints on the second stage, in the multistage
setting we have to deal with disjunctions that are induced by disjunctions on suc-
ceeding stages. Therefore, solving a fairly large mixed-integer multistage stochastic
program to optimality with this approach seems questionable.

Nevertheless, an interesting application are multistage problem that can only be
solved efficiently by a temporal decomposition, e.g., stochastic programs with re-
combining scenario trees [KVO7]. For the latter, the recombining nature of the sce-
nario tree leads to coinciding value functions, a property that can be explored by
a nested Benders decomposition. Therefore, an extension to the mixed-integer case
by application of the ideas discussed in this section seems promising.

5.3 Scenario Decomposition

Consider the following reformulation of (1) where the first stage variable x is re-
placed by one variable x' for each scenario i = 1, ..., N and an explicit nonanticipa-
tivity constraint is added:

N
min Y pi({e,x) +{q1(E).31(8) +(q2(8).32(8D))  (3%)
i=1

suchthat x' € X, y\ eR™, yheZ™, i=1,...,N, (39b)

T(ENx +Wiyi +Ways <h(E),  i=1...N,  (3%)

t=xr=... = (39d)

Problem (39) decomposes into scenariowise subproblems by relaxing the coupling

constraint (39d) [CS99]. The violation of the relaxed constraints is then added as a
penalty into the objective function. That is, each subproblem has the form

D;(A) := min {L,-(xi,yi;l)

r¥ex, yéeR’"',yéeZ”’Z, 40)
T(ENX -+ Wiyl +Wayh < h(&), [’

where A := (A!,...,AN) € R"™ is the Lagrange multiplier and
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Li(x'y'54) = pil(ex’) + (g1 (E).y1(8)) + (g2(87),32(87)) + (214" —x')),

i=1,...,N.For every choice of A, a lower bound on (39) is obtained by computing

N
D(%):=Y Di(A). (41)

That is, to compute (41), the deterministic problem (40) is solved for each scenario.
To find the best possible lower bound, one now searches for an optimal solution to
the dual problem

max{D(A) | A € R™}. (42)

The function D(A) is a piecewise linear concave function for which subgradients
can be computed from a solution of (40). Thus, solution methods for the nonsmooth
convex optimization problem (42) use a bundle of subgradients of D(A) to find
promising values of A [Ki90].

The primal solutions (x',y'), i = 1,...,N, of (40), associated with a solution of
(42), yield in general not a feasible solution to the original problem. To regain the
relaxed nonanticipativity constraint, heuristics are employed that, e.g., select for x
an average or a frequently occurring value among the x’ and then possibly resolve
each second stage problem to ensure feasibility.

To find an optimal solution to (39), a branch-and-bound algorithm can be em-
ployed. Here, nonanticipativity constraints are insured by branching on the first
stage variables. Since the additional bound constraints on x' become part of the
constraints in (40), the lower bound (42) improves by a branching operation.

An alternative to solving the dual problem (42) by a bundle method is proposed in
[LuS04]: As shown in [CS99], the problem (42) is equivalent to the primal problem

N
min ;p;(@,xi)+<611(§i)’Y1(~5i)>+<612(5i)ay2(§i)>) (43a)

L XEX, Ele, EZWQ’
such that  (x',y") econv{(x7y1,y2) ‘ T(é")x+Vi:y1 +W2y>2)2< h(E) }, (43b)
i=1,....N,
d=x=...=4 (43¢)

This problem is solved by a column generation approach, which constructs an in-
ner approximation of the convex hull in (43b). Feasible solutions for the original
problem are obtained by application of branch-and-bound.

For problems where all first stage variables are restricted to be binary, [AEO03]
propose to relax both nonanticipativity and integrality constraints. Thereby, each
scenario is associated with a branch-and-bound tree that enumerates the integer fea-
sible solutions to the scenario’s subproblem (i.e., the feasible set of (40)). Since each
branch-and-bound fixes first stage variables to be either O or 1, a coordinated search
across all n branch-and-bound trees allows to select feasible solutions from each
subproblem that satisfy the nonanticipativity constraints. If also continuous vari-
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ables are present in the first stage, [EG+07] propose to “cross over” to a Benders
decomposition whenever the coordinated branch-and-bound search yields solutions
which binary first stage variables satisfy the nonanticipativity constraints and second
stage integer variables are fixed.

6 Application to stochastic thermal unit commitment

We consider a power generation system comprising thermal units and contracts for
delivery and purchase, and describe a model for its cost-minimal operation under
uncertainty in electrical load and in prices for fuel and electricity. Contracts for de-
livery and purchase of electricity are regarded as special thermal units. It is assumed
that the time horizon is discretized into uniform (e.g., hourly) intervals. Let 7 and
I denote the numbers of time periods and thermal units, respectively. For thermal
unit i in period ¢, u; € {0, 1} is its commitment decision (1 if on, 0 if off), and x; its
production, with

uipxy ™ < xip < x5 uy (i=1,....L,t=1,...,T), (44)

where xgli“ and xj!** are the minimum and maximum capacities. Additionally, there
are minimum up/down-time requirements: when unit i is switched on (off), it must
remain on (off) for at least 7; (7;, resp.) periods, i.e.,

uir—um,lgui, (T:t—fi-i-l,...,t—l), (45)
I/li_’T,I—Mm-Sl—M,'Z (T:t—1i+1,...,t—1). (46)

forallz=1,...,Tandi=1,...,I. Let U; denote the set of all pairs (x;,;) satisfying
the constraints (44), (45), and (46) forallt = 1,...,T. The basic system requirement

is to meet the electrical load d; during all time periods t =1,...,T, i.e.,
1
intZd[ (t=1,...,T). 47)
i=1

The expected total system cost is given by the sum of expected startup and operating
costs of all thermal units over the whole scheduling horizon, i.e.,

5

1
t=1i=

(Cir (xiz, uir) +Sit(ui))> . (48)

1

The fuel cost C;; for operating thermal unit i is assumed to be piecewise linear con-
vex (concave for purchase contracts) during period ¢, i.e.,

Cir (xir,uig) := n}ax l'{ aieXir + bigeuig }
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with cost coefficients a;;;, b;;. The startup cost of unit i depends on its downtime;
it may vary between a maximum cold-start value and a much smaller value when
the unit is still relatively close to its operating temperature. This is modeled by the
startup cost

T
Sir(ui) == max_cig (’/lit -y ui.t;c) ;

where 0 =cjp < ... < Cize are cost coefficients, 77 is the cool-down time of unit 7, Cize
is its maximum cold-start cost, u; := (u,-t)thl, and uj; € {0,1} fort=1—-1¢,...,0
are given initial values.

It is assumed that the stochastic input process & = {& },T:] is given by

ét = (a,,bhct,d,) (tzl,,T)

or by some of its components. Furthermore, it is assumed that &;,...,&, (i.e., the
input data for the first time period for which reliable forecasts are available), and,
thus, the (first stage) decisions { (x;,u;) [t =1,...,t;,i=1,...,I} are deterministic.

Minimizing the expected total cost (48) such that the operational constraints
(44), (45), (46), and (47) are satisfied, represents a two-stage (linear) mixed-
integer stochastic program with (random) second stage decision {(x;,u;) |t =
n+1,...,T,i=1,... 1}

In many cases it is possible to derive a model for the probability distribution P
of £ via time series analysis based on historical data (see, e.g., [ERWO05, SYGO06]).
Sampling from P together with applying scenario reduction (see Section 4) then
leads to a finite number of scenarios {/ = (a, bl c] ,dJ ) with probabilities p;, j =
1,...,N, for the stochastic process & and to the corresponding decision scenarios
(xl U ) (for unit 7). The scenario-based unit commitment problem then reads
1 (l,l)EU,,l—l
Y pi(Ch(x ul) + S, (ul)) | TL lp,,>d,’,t—1 T (49)
li=1 j=1,...,N

\\Mw

"L

where Cj, and S, denote the cost functions for scenario j.

Since the optimization problem (49) only contains NT (unit) coupling constraints
while the number 2NT1 of decision variables is typically (much) larger, geographi-
cal decomposition based on Lagrangian relaxation of the coupling constraints (47)
seems to be promising. The Lagrangian function is of the form

N T i i
L(x,u;?t):Zij (Z(C’(xl,,un)+S]( N +A (@ — Z )

—Y Y (i(cf<xl,7u,,>+sf< /) A/x{;»wdf),

which leads to the dual function
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N

D()L):(mf)Lxu?L Z <ZDU (A1) +Zl/d/>

X,Uu —

T .
D;j(A) = iIle(lIlf( (x,,,u,,) Aexie) + S% (7))

uj X,
i =1 it

decomposing into unit subproblems for every scenario £/ and, hence, A/. While the
inner minimization (with respect to x;;) can be solved explicitly, the outer minimiza-
tion (with respect to u;) can efficiently be done by dynamic programming. The dual
concave (nondifferentiable) maximization problem

max {D(A)| A € RY"} (50)

can be solved by bundle subgradient methods (e.g., [Ki90]). If (%, IZ,/TL) is an (ap-
proximate) solution of (50), D(A) is a lower bound of the infimum of (49), but, in
general, the (maximal) load constraints

Zx:}m'fzd,f (t=1,...,T.j=1,...,N) (5D

are violated for some scenarios j and some time intervals ¢, respectively. However,
as shown in [Be82, Section 5.6.1], the relative duality gap gets small if the number /
of units is large. In many practical situations this allows to apply simple Lagrangian
heuristics (like [ZG88]) to modify i scenariowise such that (51) is satisfied for ev-
ery pair (¢, j). After having the commitment decision & fixed, a final scenariowise
economic dispatch [vBL87] leads to good primal solutions (¥, ).

The approach can be extended to multistage models by requiring in addition that
the decisions (x;,u,) in (49) only depend on (&, ..., &) (for t > ;). We refer to the
relevant work [CC+96, GK+02, GR05, NR0O, PCW00, SYGO06, TBL96, TKW00].

Furthermore, instead of the expected total system cost, a mean-risk objective of
the form

HMN

t
'YP(Ytla»YT)_(l_Y)E Z lt xlhult +Slt( )) (t:t177T>

may be considered, where y € (0,1) and p is a multi-period risk functional (see
[EHRO09]). In this way, risk management is integrated into unit commitment. If the
risk functional is polyhedral [ER05, EHR09], the scenario-based unit commitment
model may be reformulated as mixed-integer linear program.

Extensions of the two-stage stochastic unit commitment model are discussed
in [NRO2] and [NSWO05], respectively. In [NRO2], a planning model is described
whose (deterministic) first stage and (stochastic) second stage decisions are given
on the whole time horizon {1,...,T}. The first stage decisions are determined such
that a transition from the first to the second stage and vice versa is always feasible



Progress in two-stage mixed-integer stochastic programming 27

and compatible. In [NSWO05], day-ahead trading at a power exchange is incorpo-
rated into unit commitment.

7 Conclusions

We reviewed recent progress in two-stage mixed-integer stochastic programming.
First we reviewed structural properties of optimal value functions of mixed-integer
linear programs from the literature and discussed conclusions for continuity prop-
erties of integrands in two-stage mixed-integer stochastic programs. If the proba-
bility distribution has finite support, the expected recourse function is piecewise
continuous with a finite number of polyhedral continuity regions. When perturbing
or approximating the underlying probability distribution, the optimal value func-
tion behaves continuous with respect to a discrepancy distance of the original and
perturbed probability measures. This result allowed to extend the stability based
scenario reduction algorithm from [DGRO03, HRO7] to the mixed-integer two-stage
situation.

For solving a two-stage mixed-integer stochastic program, several decomposition
algorithms are reviewed. First, methods to convexify the expected recourse function
of simple and more complex integer-recourse models by perturbing the probability
measure are discussed. This allows to obtain tight bounds on the original optimal
value. Secondly, algorithms that decompose the stochastic program in a Benders
decomposition style are detailed. Here, the nonconvexity in the second-stage value
functions is captured by nonlinear optimality cuts, which might make a solution
of the master problem by branch-and-bound necessary. Further, scenario decom-
position based algorithms based on relaxation of nonanticipativity constraints are
reviewed. In a Lagrangian decomposition, the subproblems are coupled via a dual
problem which comprises the maximization of a piecewise linear concave function.

Finally, a geographical Lagrangian decomposition method is illustrated on a
stochastic thermal unit commitment problem. Here, the problem decomposed into
one (stochastic mixed-integer) subproblem for each thermal unit. This allows to ex-
ploit the subproblems structure by specialized algorithms and to use a Lagrangian
heuristic specialized for unit commitment problems.
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