
Journal of Global Optimization manuscript No.
(will be inserted by the editor)

PAVER 2.0: An Open Source Environment for
Automated Performance Analysis of Benchmarking
Data

Michael R. Bussieck · Steven P. Dirkse ·
Stefan Vigerske

Received: date / Accepted: date

Abstract In this paper we describe PAVER 2.0, an environment (i.e. a process
and a suite of tools supporting that process) for the automated performance anal-
ysis of benchmarking data. This new environment improves on its predecessor by
addressing some of the shortcomings of the original PAVER [6] and extending its
capabilities. The changes serve to further the original goals of PAVER (automa-
tion of the visualization and summarization of benchmarking data) while making
the environment more accessible for the use of and modification by the entire
community of potential users. In particular, we have targeted the end-users of
optimization software, as they are best able to make the many subjective choices
necessary to produce impactful results when benchmarking optimization software.
We illustrate with some sample analyses conducted via PAVER 2.0.

Keywords Benchmarking · Performance data analysis · Performance metrics

1 Introduction

Benchmarking is an important tool used in developing and evaluating solvers for
mathematical programming problems. The process involves many steps or compo-
nents, including the collection of suitable test problem instances, running solvers
to get performance data, and reporting on and analyzing the data obtained. While
there is a wealth of available content about the first steps (e.g. [5,10,17,20,21]),
relatively little is available about the reporting and analysis of results [2,3,4,8,9,
24]. The original PAVER addressed that issue and has become a useful suite of
tools [12], automating the process of analyzing and visualizing the performance
data (e.g. objective values, solution times, and result codes) from multiple runs in
order to summarize, gain insight, or detect inconsistencies.

As time has passed, limitations in the original PAVER have become apparent,
as has the need for new features. Some of these issues have been addressed by
making incremental changes to PAVER, but ultimately the decision was made

GAMS Development Corp.
Washington, DC 20007
E-mail: mbussieck@gams.com, sdirkse@gams.com, svigerske@gams.com



2 M. Bussieck, S. Dirkse, S. Vigerske

to undertake a complete rewrite of PAVER and at the same time to rewrite the
Examiner tool for solution verification so that it can function as part of PAVER.
We are also taking advantage of this opportunity and making the new PAVER
and Examiner tools open-source as part of the COIN-OR initiative, with all of the
advantages (in short, higher-quality, freely-available software) [7] that derive from
such an arrangement.

A major aim of the new PAVER was to implement an infrastructure that
allows simple, convenient access to a variety of different types of performance
metrics without hardcoding all parameters of any specific metric. Currently sup-
ported metrics include those based on counting solver runs with certain properties,
computing mean values and quantiles of solver run attributes, and performance
profiles. The choice of which metric to include (e.g. those based on solving times,
iteration numbers, or certain optimality gaps) is not part of the PAVER core,
but instead can be based on the available data and is specified via a separate
PAVER setup object. The hope is that such a design allows for easy adaptation
and extension by end users as their needs grow and evolve. An additional aim was
the possibility to check benchmarking data for failures, i.e., whether the results
reported by a solver are consistent, optionally taking known data about an opti-
mization instance into account, to report recognized inconsistencies back to the
user, and to (optionally) exclude such failures from the actual benchmark.

While consistency checks based on the comparison of reported bounds on the
objective value with known ones are simple to implement, checking whether a
reported solution point is indeed feasible may be a more useful test from a practical
point of view. These and related checks are implemented by the Examiner tool.
This tool provides a flexible way to measure and report on the many different
metrics for solution correctness/validity, chiefly feasibility and local optimality.
The simple question, “Is the reported solution really a solution?” may not have
a simple answer. The Examiner tool brings some structure and uniformity to the
process of finding an answer.

In Section 2, we describe the original PAVER tool, while Section 3 describes
the design and implementation of the completely rewritten PAVER. Where neces-
sary we explicitly distinguish between the original and revamped PAVER. In most
cases a reference to PAVER implies the revamped PAVER, aka PAVER 2.0. The
rationale for, design, and function of the Examiner tool for solution verification is
covered in Section 4. In Section 5 we discuss the reasons why people do bench-
marking and how that has influenced our decision-making, especially our decision
to focus on making it possible for end-users to conduct their own benchmarks.
Section 6 presents two benchmark examples and supporting discussion, while the
concluding Section 7 contains comments on future work.

PAVER 2.0 is available at http://www.gamsworld.org/performance/paver2.
In addition to the Python source, it also includes the necessary data and scripts
to reproduce the benchmark examples from Section 6.

2 PAVER 1.0 Review

PAVER was created as part of a quality assurance (QA) initiative started more
than 10 years ago when GAMS introduced the first set of global optimization
solvers into its system [6]. These QA efforts resulted in tools for data collection

http://www.gamsworld.org/performance/paver2


PAVER 2.0 3

and analysis and a comprehensive compilation of test cases made available at
GAMS World’s Performance World1. PAVER is the keystone of the data analysis
instruments (also called performance tools) providing a variety of performance
measurement tools with convenient and easy ways to represent results. The online
PAVER server2 [23] tool provides a performance analysis of benchmarking data
collected in trace files (see Section 3.2) and uploaded by an anonymous web user.
PAVER generates several results from the benchmarking data:

– The solver square allows for quick identification of models where two solvers
disagree in the result code (e.g. local infeasible versus local optimal).

– Resource time comparisons between two solvers place each model into one of
several buckets: cases that solved in nearly the same amount of time, where
one solver was faster than the other, and one solver was much faster than the
other. Within each of these buckets models are again partitioned, this time by
objective value, into cases where the objectives are the same (within tolerance),
A finds a better objective than B, and vice versa.

– Performance profiles [9] are cumulative distribution functions over a given
performance metric and give perhaps the most complete information in terms
of robustness, efficiency, and solution quality.

PAVER was implemented as a mix of AWK, GAMS (as a scripting language),
and Gnuplot scripts that were easy to create but in the long run extremely difficult
to maintain. Removal of design deficits (e.g., limitation to 8 trace files, need to
manually edit trace files from runs with a single solver but with multiple options,
limitation to 247 characters for the name of two trace files combined, requirement
to have the trace files in the same directory as the performance tools, treating
unbounded or infeasible instances as failure, etc.) and improvement suggestions
(e.g., recognition of inconsistencies, availability of additional performance met-
rics, adaptivity and extensibility for purposes that go beyond comparing objective
values and solution times, better performance, independence of GAMS, etc.) from
PAVER users could not be implemented with a justifiable effort within the original
design framework.

3 Updated infrastructure

Thus, to overcome the limitations of the first PAVER implementation, we have
undertaken a complete rewrite. We have chosen to implement in Python, since it
is a powerful scripting language that is freely and widely available, easy to learn,
and offers extension packages for almost any purpose. One such extension is the
pandas library3, which provides optimized data structures and data analysis tools
for the kind of calculations that we intent to do with PAVER.

PAVER currently produces output in the form of HTML and simple text. It
can be used as command line tool or as a Python package. PAVER consists of the
following components.

1 http://www.gamsworld.org/performance
2 http://www.gamsworld.org/performance/paver
3 http://pandas.pydata.org

http://www.gamsworld.org/performance
http://www.gamsworld.org/performance/paver
http://pandas.pydata.org


4 M. Bussieck, S. Dirkse, S. Vigerske

3.1 Data

All input data is stored in pandas data structures (DataFrame and Panel). On the
highest level, we distinguish solver run identifiers. These identifier may contain
the name of an option file, if one solver has been run with different settings, and
a run identifier if a solver has been run several times on an instance. Several runs
can be useful to guard against high sensitivity of a solver’s performance on initial
conditions like the order of variables and constraints or the choice of an initial seed
of a random number generator [2,17]. PAVER then usually aggregates the various
runs for a solver on an instance into a single record, e.g., by averaging solving
times. This averaged record is then used for comparisons with other solvers.

For each solver identifier, we store a table that provides for each problem
instance the values of certain solve attributes. So far, the only mandatory attribute
for a solver run is the termination status, i.e., the reason why a solver stopped.
This could be because the solver completed its algorithm, because a certain limit
(e.g., time, iterations, memory) has been reached, because it rejected the instance
due to capability problems, or others. A solver run may also contain the primal
and dual bounds on the objective value, the solving time, the number of iterations
or branch-and-bound nodes, etc. Since these attributes are optional, routines that
evaluate the solver runs need to be prepared for missing data.

For each problem instance, we also store several statistics (e.g. the number of
variables, discrete variables, constraints, and Jacobian nonzeros). If available, we
further store information on the optimal value of a problem instance or bounds
on this value. For a minimization (maximization) instance, we denote an upper
(lower) bound on the optimal value by primal bound (i.e., the objective value of a
best known feasible solution) and a lower (upper) bound on the optimal value by
dual bound, see also [1].

After all input data has been assembled, we compute derived data. For example,
from the final primal and dual bounds reported for a solver run, we compute the
gap between these values and the gap to the optimal value of the corresponding
instance, if known. The gap between primal (dual) bound and optimal value is
denoted by primal (dual) gap [3].

If information on the progress of primal and dual bounds during the solver run
is available, we also compute the primal integral, dual integral, and gap integral
[3]. The primal integral is the integral of the relative gap between primal bound
and optimal value for an instance over the solving time. A small primal integral
indicates that a solver found a good feasible solution early in the search. Analogous
statements can be made for the dual integral (measuring the distance of dual bound
and optimal value) and the gap integral (measuring the distance of primal and dual
bound).

3.2 File parser

File parsers are responsible for reading solving and benchmarking related data
from a file. So far, PAVER can read comma separated value (csv) files that con-
tain in each line the outcome of a solver run (instance name, solver name, options
file name, instance statistics, solving statistics, ...). With GAMS, files in this for-
mat can be generated with the options trace=file.trc and traceopt=3 (or 5).



PAVER 2.0 5

The Examiner tool (see Section 4) can generate csv files which contain the infor-
mation above and additional information about the primal and dual infeasibility
and complementarity gaps for the solution reported by a solver.

PAVER can also read csv files that report for a single solver run the progress
of primal and dual bound over time or number of enumerated branch-and-bound
nodes. Several of the GAMS solver links can write these files via the miptrace and
solvetrace options.

Finally, PAVER can read information about the optimal value of a problem
instance or bounds on that value from a solution file. For this input, we use the
same syntax as in [24].

Additional parsers can easily be added to the tool. The next parser will be for
result files from the Optimization Services project at COIN-OR.

3.3 Consistency Checks

Consistency checks check the solving data for obvious inconsistencies. As a result
of such checks, either a single solver run or all solver runs for a specific instance can
be marked as inconsistent. PAVER stores an explanatory string along with each
inconsistency marker used when generating reports or displaying solver outcomes.

In situations where the primal and dual bounds for a solver run contradict
known primal or dual bounds for that instance, only the particular solver run is
marked as inconsistent. If the bounds reported by two solver runs contradict each
other and known bounds are not available or do not serve to invalidate one of the
solver results, the complete instance is marked as inconsistent, since it is not clear
which solver reported a wrong result.

Additionally, PAVER can check that the infeasibilities reported by the solu-
tion checker Examiner do not exceed certain tolerances. See Section 4 for more
details on this and Section 6.2 for an example. Finally, PAVER marks instances
that terminated due to capability problems, an error, or an unknown reason as
inconsistent, so they can be easily excluded from evaluations.

3.4 Statistics Generator

The statistics generator takes a set of metrics as input. The purpose of a metric
is to specify the evaluation of a solve attribute (e.g., solving time, termination
status, gap at termination) in a single object. Thus, a metric specifies a solve
attribute, a number of parameters, and a set of filters on the list of instances for
which statistical measures are computed and visualized. Filtering can be used,
for example, to compute statistics only with respect to instances where no solver
reported inconsistent results, which were solved to optimality by all solvers, or
where all solvers found an optimal solution. The parameters of a metric specify
which statistical measures are computed for the corresponding solve attribute and
each filtered set of instances.

For the solve attribute and each filter of a metric, the following statistics can
be computed (using standard pandas functionality): a count on the number of
instances where a value for the attribute is available, arithmetic, geometric, and



6 M. Bussieck, S. Dirkse, S. Vigerske

shifted geometric means and standard deviations4 and minimal and maximal val-
ues of the attribute and intermediate quantiles (e.g., 10%, 25%, median, 75%, and
90%). Further, visualizations of counts and means by bar charts and quantiles by
boxplots are generated.

Next to the real solver runs, the virtually best and virtually worst solvers, given
by taking, for each instance, the best and worst value of the attribute, respectively,
are also included into the evaluation of statical measures. This allows, for example,
to count how many instances were solved by at least one solver and how many
were solved by all solvers and to compare this number to the number of solved
instances by each single solver.

To further facilitate solver comparisons, the user can designate some or all
solvers as reference solvers. By default, the virtually best solver is chosen for this
role. For each reference solver and each attribute value, PAVER computes the ra-
tios of each solver’s attribute value to that of the reference solver. For these ratios,
statistical measures like arithmetic means and quantiles are again computed. Ad-
ditionally, PAVER calculates the number of instances for which a solver’s attribute
value is better than, similar to, or worse than the reference solver’s value, where
the classification into better/worse than or similar to is done w.r.t. user-specified
absolute and relative tolerances. Again, bar charts and boxplots are generated for
visualization. These comparisons to reference solvers mimic the pairwise solver
comparisons of the solver square and resource time utility of PAVER 1.0.

Finally, the new PAVER can also compute and visualize performance profiles of
the sort introduced in [9]. For a solve attribute and an instance filtering, PAVER
can compute both relative and absolute profiles, i.e., those showing either the
outcome of a solver in relation to the best outcome on that instance among all
solvers, or those showing the absolute solver’s outcome. Additionally, extended
performance profiles as suggested by [18] can be generated. While the usual profiles
only indicate for how many instances a solver was at most x times slower than the
best solver, the extended profiles also show the number of instances for which a
solver was at least x times faster than all other solvers. As before, the performance
for the virtually best and worst solvers are also included.

3.5 Writer for Solving and Instance Data

The main purpose of the writer for solving data is to display the instance and
solving data in a HTML or text table. In imitation of the display columns facility
of SCIP [1], the writer routine takes an object for each column as input. The
column object determines which data should be printed in its column and in which
form by implementing methods to return the header of the column, the unit, the
alignment, and a string, a color, and (optionally) a number for a certain row. In
the HTML output, instances or solver runs that were found to be inconsistent are
also marked by a light red background color, with a mouse-over text that provides
additional explanation and detail. Optionally, the numbers in a column can be
visualized in a bar chart.

4 While arithmetic means are sensitive to variations of data with relatively large range and
insensitive to variations of data with relatively small range, geometric means are more sensitive
to variations close to zero. As a compromise, PAVER can also compute shifted geometric means
[1], which reduce the effect of data points close to zero in the geometric mean by shifting.



PAVER 2.0 7

3.6 Setup

A PAVER setup determines which consistency checks should be run, which metrics
should be evaluated, and which columns should be included in the output of the
solving and instance data. The default setup tries to determine useful metrics from
the input data and the values of the command line parameters. These metrics
evaluate the inconsistency markers and attributes like solving time, number of
nodes, number of iterations, primal and dual bound / gap / integral, gap (between
primal and dual bound), and gap integral. Additionally, a user can specify further
solve attributes to be evaluated via the --eval option.

For filtering, the default setup considers an empty filter (i.e., do not exclude
any instance) and filters that only include instances which did not fail, where the
gap (between primal and dual bound) is below the gap tolerance (10−6 by default),
below 1%, or below 10%, or instances with primal bound at most 10−6, 1%, or 10%
worse than a known optimal value. For means and quantiles, we usually require
that such criteria need to hold for all instances in order to include them into the
filter. However, a filter for performance profiles usually applies these criteria to
each solver separately, thereby implicitly assuming an infinitely bad performance
if a solver does not satisfy a criterion on an instance.

4 Solution verification

It’s tempting to avoid the issue of solution verification entirely and simply accept
all solver claims as valid. In fact, this is often what people do in practice. In
some cases, where trusted and well-tested codes are being compared and where
simplicity and ease of execution are the primary factors, such an approach is
justified. However, one quickly discovers many uses for an independent solution
verification tool.

Frequently, such tools are most useful when developing solvers and related
code. Of course, errors in an algorithm or its coding can lead to false solutions. A
perfect solver will stumble if the automatic differentiation techniques used deliver
incorrect derivatives. And even when the solution is correct in one part of a code,
it is very easy to make mistakes in solution reporting or transferring/translating
solutions from one component to another. With the gross errors common in the
development phase of optimization software, there is usually little doubt that the
reported solution is in error, and those responsible for fixing the problem are
usually grateful to have it pointed out to them.

In contrast, verification tools may be used to check if the solution satisfies
a set of specified tolerances. Solvers typically do not report exact solutions, but
rather a solution that satisfies tolerances for feasibility and optimality. The default
tolerances vary from solver to solver, and more importantly, the exact definition
of what metrics (measurements of feasibility, optimality, and complementarity)
are compared to these tolerances vary as well. In practical work this is usually
not an issue, although there are cases where a user will notice that a solver may
return a solution that is “too loose”. When running a benchmark, however, this is
a more important topic, since stopping early in a systematic fashion by loosening
tolerances will tend to make a solver look like a better performer. For this reason



8 M. Bussieck, S. Dirkse, S. Vigerske

it is useful to have an independent check that solutions are meeting a well-defined
standard before they are accepted as feasible and optimal.

Others have previously recognized the need for such tools. Dolan, Moré and
Munson [11] pointed out the bias that results when different convergence tests are
used by competing solvers in a benchmark and proposed a specific convergence test
to be applied a posteriori in order to remove this bias. They also present experi-
mental evidence of the different performance profiles that result when solvers are
required to satisfy a uniform convergence test. More recently, a solution checker
has been added to the MIPLIB 2010 problem suite [17]. This checker is intended
for use on MIP models so it avoids optimality checks altogether, checking only that
the claimed solution point is feasible and consistent with the reported objective
value. It performs this check in full precision using the GMP arbitrary precision
arithmetic package [15]. We see in these references the necessity of adjusting the
validation procedure based on the problem type and solution information returned
by a solver. For continuous optimization we can check feasibility and local optimal-
ity, and, assuming convexity, global optimality as well. For problems with discrete
variables we can check feasibility. If the solver returns dual information for the
continuous subproblem defined by fixing discrete variables, local optimality can
be checked as well. However, this check for local optimality is of lesser impor-
tance in discrete optimization, and checking global optimality can be as difficult
as solving the problem.

The solution verification tool in the GAMS system, developed in part for the
reasons given above, is the Examiner utility [14]. As part of our revamp of PAVER
we have taken the core of the Examiner utility, the part not specific to GAMS,
and broken it out as a standalone library, which we intend to make available as
a COIN-OR project. We believe that making the code public in this way will
have several advantages to the optimization community, including ourselves. It
will be useful as an objective standard by which solutions can be verified when
benchmarking solvers. Such use will be especially convenient when benchmark-
ing solvers that, like Examiner, belong to COIN-OR. To illustrate this, we have
created an interface between the Examiner library and the Optimization Services
(OS) project in COIN-OR. This interface allows to pass model instances in the
OSiL language and their solutions in the OSrL result to the Examiner library for
verification. We also hope that solver developers find it as useful as we have when
doing internal quality control. As Examiner developers, we have found that making
Examiner open-source has been an effective driver for finding a clean separation of
the Examiner library and the GAMS/Examiner link and for creating a project we
can be pleased to have our name on. We also hope to benefit from an exchange of
ideas and perhaps contributions of code that is only possible with an open-source
project, so that Examiner is making the right checks in the best way possible.

The Examiner library is structured and used similarly to the solvers whose
solutions it will be examining. This makes it easy to introduce solution validation
via Examiner as a component of any benchmarking exercise. The model is loaded
into Examiner as a group of arrays for linear models and additionally via a non-
linear function callback for nonlinear models. Solutions to be checked are passed
in via subsequent calls. By default, the Examiner check for optimization models
includes the following metrics: feasibility for primal and dual variables, feasibility
for primal and dual constraints, and the primal and dual complementarity gaps. If
desired, a particular subset of these checks can be selected. All tolerances to use for



PAVER 2.0 9

these checks take reasonable if conservative defaults and can be set by the user. A
number of different schemes for displaying and querying the results are supported.
For example, when developing a model or debugging a solver, Examiner’s log out-
put showing the location and values for the largest errors exceeding the tolerance
is quite useful, but when validating benchmarking results from many instances a
simpler report indicating success or failure or simply logging the computed values
of the various metrics for use in a later check is more appropriate.

When a solution fails a validity check due to a tolerance issue, it is not nec-
essarily the case that an error has occurred. The right choice for the tolerances
is always a subject of debate, and one must also consider that Examiner is oper-
ating on the original model formulation, while solvers perform their termination
checks on a modified representation, typically one that has been presolved and
scaled. There are both practical and philosophical reasons for Examiner to make
its checks on the original model: many solvers don’t make the scaled, presolved
version of the model available, and even if they did, the quality of the solution in
the original space is likely to be of more interest to the user. However, scaling is
such an important factor that Examiner can optionally do a scaled check, after
making a row scaling of the original model. In addition to checking a model that we
expect is more similar to the solver’s internal formulation, this check also identifies
the row with maximum scale, which may be useful in adjusting the model during
development or in explaining why a solver was unable to compute a sufficiently
precise solution.

5 Subjectivity, reproducibility, and automation

It’s useful now to take a step back and consider some different motivations for
benchmarking optimization software:

– To find the “best” solver or to rank solvers. Historically, this has usually been
done on the basis of speed but robustness and solution quality are also impor-
tant considerations.

– To compare development versions of particular solvers with earlier, stable re-
lease versions. Such benchmarks are done by the solver developer to see if and
by how much the new version improves over the old but also to discover cases
where performance drops.

– To compare several different option settings. A solver developer might do this
to choose good default values, while an end user might do this in an attempt
to get better overall performance.

– To choose a solver or set of solvers to use for a particular application. In this
case one may wish to rank solver combinations, especially if robustness and
solution quality are primary concerns.

In each of the cases above, the outcome is determined not only by the at-
tributes of the solvers being tested but by many subjective choices that go into
the benchmark. Such choices include the set of problem instances to run, the
computing environment to use, and the time limit to use. Once the raw data are
obtained, there are still many choices to make: how to treat solver failure or time
elapsed outcomes, what rules and tolerances to use in validating solutions, how to
weight speed vs. solution quality, what other performance measures to consider,



10 M. Bussieck, S. Dirkse, S. Vigerske

etc. When those with an interest in the outcome (e.g. solver developers) do a
benchmark it’s only natural to expect some natural bias to influence the results,
but even a neutral person is forced to make many choices, all of which can bias the
results in one direction or another. The best solution for this issue of subjective
bias is an environment that uses automation to make the benchmarking process
easily reproducible, so that interested users of optimization software can conduct
their own benchmarking experiments. This does not remove all subjectivity: the
end user must make the same subjective choices as a solver developer or anyone
else. But at least the results will be biased towards the set of model instances,
performance measures, and validation rules that are most important to the user:
her own. If we momentarily lump benchmarking results with statistics, a quote
misattributed to Winston Churchill is relevant: “I only believe in statistics that I
doctored myself” [25]. A user-generated benchmark will be most trusted and will
have maximum impact.

As a practical matter, some users will be unwilling or unable to conduct their
own benchmarks and will instead rely on the work of others. For example, Mittel-
mann’s benchmarking talks at conferences are typically quite well attended and
people follow his published [20] and online results [21,22] with interest. Even in
such cases, it is beneficial to rely on work done using open-source, well-tested
environments. The involvement of the larger community serves to identify and
sometimes fix errors in tools like PAVER and Examiner, as well as prompting the
inclusion of useful improvements and new features, so the analysis results are im-
proved. In addition, anyone using the results of a benchmark done using an open,
automated environment can be more confident that the results have not been in-
tentionally biased or falsified, since doing so would be more difficult to hide in
such a case. The likelihood of errors due to shortcuts or innocent human error
is also reduced. This applies equally well to the process of running the solvers as
to generating the analysis results, and while not the subject of this paper, it is
important that an automated, reproducible process for running the models also
be part of the testing environment.

6 Example benchmarks

6.1 MIP

First, we have run the 87 instances in the benchmark set of the MIPLIB 2010 [17]
on 5 MIP solvers under GAMS with a timelimit of 1 hour and using the GAMS
trace and traceopt options (see Section 3.2) to generate comma separated value
files with statistics on the performance of each solver on each instance. Since, in
the context of this paper, we are mainly interested in discussing PAVER 2 than
in comparing MIP solvers, we disguise their real names here.

With the files at hand, we run PAVER with a command like

python src/paver/paver.py \

balin.trc bifur.trc bombur.trc gimli.trc thorin.trc \

solu/miplib2010.solu \

--failtime 3600 --refsolver Gimli --writehtml mip

This lets PAVER read the 5 GAMS trace files balin.trc, bifur.trc, bombur.trc,
gimli.trc, and thorin.trc and the solution file miplib2010.solu. The failtime



PAVER 2.0 11

100 101 102 103

SolverTime at most this factor of best

0

10

20

30

40

50

60

70

80

N
u
m

b
e
r 

o
f 

in
st

a
n
ce

s 
w

it
h
 g

a
p
 <

=
 0

.0
0
0
1
%

 a
n
d
 n

o
t 

fa
ile

d

Relative performance profile (SolverTime)

Thorin

Gimli

Bombur

Balin

Bifur

virt. best

virt. worst

Fig. 1 Performance Profile for solving time of 5 MIP solvers and the corresponding virtually
best and worst solvers.

option lets PAVER use a solving time value of 3600 seconds for mean value com-
putations if a solver failed on an instance, i.e., an inconsistency check failed or
a solver crashed. Additionally, we instruct PAVER to create comparisons of each
solver’s performance to the Gimli solver. The HTML output of PAVER is stored
in a directory mip.

Figure 1 shows the performance profile generated by PAVER. It seems to show
a clear ranking of the solvers in the order Gimli, Thorin, Bombur, Balin, and Bifur.
Figure 2 shows bar charts for a number of performance metrics. It is seen that
Balin failed on 23 instances, either because it terminated with an error or because
it reported primal or dual bounds that were inconsistent with the known optimal
value. This high number may indicate a bug in the Balin code. The mean solving
time shows a slight edge for Balin before Bifur and Balin also solved two more
instances to optimality than Bifur, however, Bifur found optimal solutions in four
more cases than Balin5. This demonstrates that to evaluate a solver’s performance,
consideration of more than one metric (like mean solving time) is advised.

Note further, that for the mean solving time, a value of 3600 seconds was
used for instances where a solver failed. If one considers only instances where no
solver failed, Balin appears to have a larger distance to Bifur, i.e., instead of 2217s
and 2277s for Balin and Bifur, resp., the mean times reduce to 1823s vs 2155s.
Thus, while treating failed instances as if a timelimit was hit may yield large
performance ratios for small but numerically unstable instances, eliminating them
from the comparison may also falsify the benchmark, e.g., because the remaining
test set may become too small (or imagine a case where a solver always crashes
when it hits the timelimit), see also [2].

5 PAVER uses a gap tolerance of 10−6 by default. However, we have run our solvers with a
zero gap tolerance.



12 M. Bussieck, S. Dirkse, S. Vigerske

Balin Bifur Bombur Gimli Thorin
0

5

10

15

20

25
23

5

0 0 0

Fail - instance or solve run marked as failed

virt. best virt. worst

Balin Bifur Bombur Gimli Thorin
0

500

1000

1500

2000

2500

3000

2217.07 2277.10

1384.77

188.89

521.38

SolverTime - sh.geom. means
Filter: all instances

virt. best virt. worst

Balin Bifur Bombur Gimli Thorin
0

20

40

60

80

100

120

103.36

85.69

61.29

1.0

22.52

SolverTime w.r.t. Gimli - arith. means
Filter: all instances

virt. best virt. worst

Balin Bifur Bombur Gimli Thorin
0

10

20

30

40

50

60

70

80

23 21

42

75

68

Gap - gap <= 0.0001% and not failed

virt. best virt. worst

Balin Bifur Bombur Gimli Thorin
0

20

40

60

80

36
40

58

81
78

PrimalGap - within 0.0001% of known optimal value and not failed

virt. best virt. worst

Balin Bifur Bombur Gimli Thorin
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.17 0.18

0.24

0.03

0.06

PrimalGap - arith. means
Filter: no fail by all solver and known optimal value

virt. best virt. worst

Fig. 2 Visualization of some performance metrics: Number of instances where a solver failed,
shifted geometric mean of solving time, average ratio of a solver’s solving time to Gimli’s
solving time, number of instances solved to optimality, number of instances where an optimal
solution has been found, and average primal gap at termination.

6.2 NLP

As a second example we compare several GAMS-linked NLP solvers using the
GLOBALLIB set of problem instances [19], running with a time limit of 15 min-
utes. We ran each NLP solver under GAMS/Examiner with options set to write
trace files that include the primal/dual variable and constraint infeasibility and
primal/dual complementarity gap, in addition to the usual trace output as de-
scribed in Section 6.1. Note that we used only the NLP and DNLP models from
GLOBALLIB, omitting the CNS models. We replace the solver names here with
reindeer names to help in keeping the focus on PAVER and not the NLP solvers.

With the solver runs completed and the trace files in hand, we run PAVER
with a command like

python src/paver/paver.py \

comet.trc cupid.trc dasher.trc dancer.trc donner.trc \

solu/globallib.solu \

--failtime 900 --mintime 0.1 \

--ccopttol inf --ccfeastol inf \

--writehtml localExamNo

This lets PAVER read the five GAMS solver trace files and the solution file
globallib.solu. The failtime option lets PAVER use a solving time value of 900s
for mean value computations if a solver failed on an instance, i.e., a consistency
check failed or a solver crashed. Since all of the solvers in this set are local solvers,
no dual bounds are available, so PAVER will skip any related reports or checks. A
reduced minimum solver time is appropriate for this set of test instances, so we set
mintime smaller than default. Setting ccopttol and ccfeastol to infinity turns off
any checks on the Examiner-provided values: we are accepting the solver reports
at face value in this case. The HTML output generated by PAVER is stored in
the directory localExamNo.



PAVER 2.0 13

100 101 102 103 104

SolverTime at most this factor of best

0

50

100

150

200

250

300

350

400

N
u
m

b
e
r 

o
f 

in
st

a
n
ce

s 
w

it
h
 n

o
 f

a
il

Relative performance profile (SolverTime)

donner

comet

dancer

cupid

dasher

virt. best

virt. worst

Fig. 3 Performance Profile for solving time of 5 NLP solvers and the corresponding virtually
best and worst solvers.

Figure 3 shows the performance profile generated by PAVER. It suggests that
all solvers are doing well, with Cupid, Dasher, and Comet leading the pack, Dancer
a bit behind that, and Donner trailing behind on performance.

What about other performance metrics? Do they tell the same story? In this
case, some of them do and some do not. As shown in Figure 4, the number of
failed instances and mean solving time show the same sort of preference ranking
as the performance profile. However, Dancer and Dasher seem to be finding a
global optimal solution more frequently than the others, so the ranking can tilt if
one weights this more heavily6.

Recall that the results in Figures 3 and 4 essentially take the solver return
values at face value, since the options ccopttol and ccfeastol were set to infinity.
Our next PAVER run makes use of the Examiner-provided values by setting the
feasibility and optimality tolerances to a modest value of 10−5, but the parameters
are otherwise unchanged from the previous run.

The difference is immediately apparent (Fig. 5): Cupid and to a lesser extent
Donner suffer because they return solutions that are not precise enough. Comet
and Dancer are affected somewhat but both only slightly. This is also illustrated
by Figure 6, comparing the number of consistent solutions reported both without
and with Examiner checks, and Figure 7, showing the increased solution time and
decreased number of successes finding a global solution when results are required
to pass a verification check. Note that results that fail to verify are assigned the
failtime value of 900s.

This example has so far only involved local solvers, but what about global
solvers? In this next benchmark we add data for the two solvers Blitzen and
Prancer, both run in the same way as the other solvers. To keep the results from
becoming too cluttered we also remove the solvers Cupid (it’s really the Comet

6 Note that our globallib.solu file contains known optimal values for only half of the
GlobalLib instances, so the number of global optimal solutions found and the mean primal
gap are computed w.r.t. these 214 instances only.



14 M. Bussieck, S. Dirkse, S. Vigerske

comet cupid dancer dasher donner
0

10

20

30

40

50

7
10

13
11

28

Fail - instance or solve run marked as failed

virt. best virt. worst

comet cupid dancer dasher donner
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.19 0.19

0.25
0.21

0.40

SolverTime - geom. means
Filter: all instances

virt. best virt. worst

comet cupid dancer dasher donner
0

20

40

60

80

100

120

140

160

112
106

129 131

117

PrimalGap - within 0.0001% of known optimal value and not failed

virt. best virt. worst

comet cupid dancer dasher donner
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.59
0.61

0.38 0.38

0.54

PrimalGap - arith. means
Filter: no fail by all solver and known optimal value

virt. best virt. worst

Fig. 4 Visualization of some performance metrics: Number of instances where a solver failed,
geometric mean of solving time, number of instances where a global solution has been found,
and average primal gap at termination.

100 101 102 103 104

SolverTime at most this factor of best

0

50

100

150

200

250

300

350

400

N
u
m

b
e
r 

o
f 

in
st

a
n
ce

s 
w

it
h
 n

o
 f

a
il

Relative performance profile (SolverTime)

donner

comet

dancer

cupid

dasher

virt. best

virt. worst

Fig. 5 Performance Profile for solving time of 5 NLP solvers and the corresponding virtually
best and worst solvers, using Examiner.

solver run with over-wide tolerances) and Dancer (it’s identical to Dasher with
the exception of the linear algebra routines used). We chose to run PAVER with



PAVER 2.0 15

comet cupid dancer dasher donner
0

10

20

30

40

50

7
10

13
11

28

Fail - instance or solve run marked as failed

virt. best virt. worst

comet cupid dancer dasher donner
0

50

100

150

200

9

166

30 26

101

Fail - instance or solve run marked as failed

virt. best virt. worst

Fig. 6 Number of failed instances with no Examiner checks (left) and with Examiner checks
on feasibility and optimality.

comet cupid dancer dasher donner
0

2

4

6

8

10

12

14

0.20

4.59

0.34 0.28

1.31

SolverTime - geom. means
Filter: all instances

virt. best virt. worst

comet cupid dancer dasher donner
0

20

40

60

80

100

120

140

112

81

126 126

106

PrimalGap - within 0.0001% of known optimal value and not failed

virt. best virt. worst

Fig. 7 Visualization of some performance metrics for Examiner-checked solutions: geometric
mean of solving time and number of instances where a global solution has been found.

options similar to those used above. Since we are taking the global nature of these
problem instances into account we ignore the Examiner-based optimality checks
and check only feasibility. The PAVER command looks like

python src/paver/paver.py \

blitzen.trc comet.trc dasher.trc donner.trc prancer.trc \

solu/globallib.solu \

--failtime 900 --mintime 0.1 \

--ccopttol inf --ccfeastol 1e-5 \

--writehtml global

The PAVER output for this case contains several performance profiles. One
subgroup shows solver time for those models where the gap is within a given
tolerance. We show in Figure 8 the case where the gap is within 1%: the results
are quite similar for 10% or 10−6. The two global solvers are quite distinct in this
case, with Prancer dominating Blitzen, but the local solvers all show as complete
failures, since they do not report any gap at all. If we look at the solver time for
instances with a small primal gap then the local solvers play a role, but we can
only report on models with a known solution. Figure 9 shows such a performance
profile. It’s interesting to note that the ranking of the global solvers is reversed in



16 M. Bussieck, S. Dirkse, S. Vigerske

100 101 102 103 104

SolverTime at most this factor of best

0

50

100

150

200

250

300

350

400

N
u
m

b
e
r 

o
f 

in
st

a
n
ce

s 
w

it
h
 g

a
p
 <

=
 1

.0
%

 a
n
d
 n

o
t 

fa
ile

d Relative performance profile (SolverTime)

donner

comet

dasher

prancer

blitzer

virt. best

virt. worst

Fig. 8 Performance Profile for solving time for 5 NLP solvers, considering only runs that
report a gap of at most 1% at termination, with feasibility validation.

100 101 102 103 104

SolverTime at most this factor of best

0

50

100

150

200

250

300

350

400

N
u
m

b
e
r 

o
f 

in
st

a
n
ce

s 
w

it
h
 w

it
h
in

 0
.0

0
0
1
%

 o
f 

kn
o
w

n
 o

p
ti

m
a
l 
v
a
lu

e
 a

n
d
 n

o
t 

fa
ile

d

Relative performance profile (SolverTime)

donner

comet

dasher

prancer

blitzer

virt. best

virt. worst

Fig. 9 Performance Profile for solving time for 5 NLP solvers on models with a near-zero
primal gap, with feasibility validation.

this case, with Blitzen dominating Prancer. Evidently Blitzen is relatively strong
in finding an optimal solution but Prancer is doing a better job bringing up the
dual bound. This is another example of a case where a subjective choice (which
metric to use and, implicitly, the set of models where that metric is defined) plays
an important role in the process.

The conclusions above are consistent with what we see using other metrics.
For example, in Figure 10, we see that both global solvers are more effective at
finding the optimal solution than any of the local solvers, with Blitzen slightly
more effective than Prancer. We also see that Prancer has the edge when the
metric used is the dual gap.



PAVER 2.0 17

blitzer comet dasher donner prancer
0

50

100

150

200

180

112

128

111

167

PrimalGap - within 0.0001% of known optimal value and not failed

virt. best virt. worst

blitzer comet dasher donner prancer
0

20

40

60

80

100

120

40

0 0 0

108

DualGap - dual gap <= 0.0001% and not failed

virt. best virt. worst

Fig. 10 Performance metrics for Examiner-checked solutions: number of instances where a
global solution has been found and where the dual gap is nearly zero.

It is worth mentioning that the PAVER output also contains raw and processed
results in an easily browsable form. This is quite useful when drilling down to see
what’s behind the various summary reports. For example, in the PAVER HTML
output, the “global solution found” report from the left picture in Figure 10 is
linked to a table showing the primal gap for all cases where it is below 10−6.

7 Conclusions

In this paper we have described PAVER 2.0, our environment for verifying and
analyzing benchmarking data. Like many software projects, it is never really fin-
ished but instead constantly evolves in the face of changing needs, expectations,
and computing environments. Our future plans for PAVER include the addition of
new performance metrics, e.g., the ones used in [13] and ones based on statistical
tests for dominance of one set of data over another. For the Examiner component,
we plan to include alternate metrics for convergence to a solution [11]. The time
that PAVER spends to generate the various plots will likely be decreased, and
additional output formats, especially LATEX, are under consideration. Finally, we
note that PAVER currently operates in a batch mode. The introduction of an in-
teractive mode, allowing the user to filter instance data and calculate performance
metrics on the fly (as is possible with [16]) could be useful.

Perhaps more important than our specific future plans for PAVER development
are the possibilities for new directions and uses that we hope and expect will arise
out of making PAVER an open-source environment. PAVER grew out of our own
internal needs, but we believe it can be useful to others, and we look forward
to the improvements to PAVER that can only come through the involvement
and perspective of a larger group. If PAVER is used and adopted as a de-facto
standard by the optimization community and serves to promote lively discussion
and development in the area of performance analysis tools, we will consider it to
be successful indeed.

References

1. Achterberg, T.: Constraint integer programming. Ph.D. thesis, TU Berlin (2007).
urn:nbn:de:0297-zib-11129

http://nbn-resolving.de/urn:nbn:de:0297-zib-11129


18 M. Bussieck, S. Dirkse, S. Vigerske

2. Achterberg, T.: Benchmarking a MIP Solver. talk in CPAIOR master class (2010). URL
http://cpaior2010.ing.unibo.it/?q=node/10

3. Berthold, T.: Measuring the impact of primal heuristics. Operations Research Letters
41(6), 611–614 (2013). doi:10.1016/j.orl.2013.08.007

4. Billups, S.C., Dirkse, S.P., Ferris, M.C.: A comparison of large scale mixed complemen-
tarity problem solvers. Computational Optimization and Applications 7(1), 3–25 (1997).
doi:10.1023/A:1008632215341

5. Bussieck, M.R., Drud, A.S., Meeraus, A.: MINLPLib - a collection of test models for
mixed-integer nonlinear programming. INFORMS Journal on Computing 15(1), 114–119
(2003). doi:10.1287/ijoc.15.1.114.15159

6. Bussieck, M.R., Drud, A.S., Meeraus, A., Pruessner, A.: Quality assurance and global op-
timization. In: C. Bliek, C. Jermann, A. Neumaier (eds.) Global Optimization and Con-
straint Satisfaction, Lecture Notes in Computer Science, vol. 2861, pp. 223–238. Springer
(2003). doi:10.1007/978-3-540-39901-8 17

7. Why open source? (2013). URL http://www.coin-or.org. [Online; accessed 15-May-2013]
8. Crowder, H., Dembo, R.S., Mulvey, J.M.: On reporting computational experiments with

mathematical software. ACM Transactions on Mathematical Software 5(2), 193–203
(1979). doi:10.1145/355826.355833

9. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles.
Mathematical Programming 91(2), 201–213 (2002). doi:10.1007/s101070100263

10. Dolan, E.D., Moré, J.J., Munson, T.S.: Benchmarking optimization software with COPS
3.0. Tech. Rep. ANL/MCS-273, Mathematics and Computer Science Division, Argonne
National Laboratory (2004). URL http://www.mcs.anl.gov/~more/cops

11. Dolan, E.D., Moré, J.J., Munson, T.S.: Optimality measures for performance profiles.
SIAM Journal on Optimization 16(3), 891–909 (2006). doi:10.1137/040608015

12. Drud, A.S.: Testing and tuning a new solver version using performance tests. INFORMS
2002, San Jose, session on ’Benchmarking and performance testing of optimization soft-
ware’. URL http://www.gams.com/presentations/present_performance.pdf. [Online;
accessed 15-May-2013]

13. Exler, O., Lehmann, T., Schittkowski, K.: A comparative study of SQP-type algorithms
for nonlinear and nonconvex mixed-integer optimization. Mathematical Programming
Computation 4(4), 383–412 (2012). doi:10.1007/s12532-012-0045-0

14. GAMS Development: GAMS/Examiner, User’s Manual (2013). URL http://www.gams.
com/dd/docs/solvers/examiner.pdf. [Online; accessed 8-May-2013]

15. Granlund, T., the GMP development team: GNU MP: The GNU Multiple Precision Arith-
metic Library (2012). URL http://gmplib.org

16. Hendel, G.: PyEvalGui - GUI components to facilitate evaluation of SCIP and other solving
software (2013, in development)

17. Koch, T., Achterberg, T., Andersen, E., Bastert, O., Berthold, T., Bixby, R.E., Danna,
E., Gamrath, G., Gleixner, A.M., Heinz, S., Lodi, A., Mittelmann, H., Ralphs, T., Sal-
vagnin, D., Steffy, D.E., Wolter, K.: MIPLIB 2010 – mixed integer programming li-
brary version 5. Mathematical Programming Computation 3(2), 103–163 (2011). doi:
10.1007/s12532-011-0025-9

18. Mahajan, A., Leyffer, S., Kirches, C.: Solving mixed-integer nonlinear programs by QP-
diving. Preprint ANL/MCS-P2071-0312, Argonne National Laboratory (2012). URL http:
//www.optimization-online.org/DB_HTML/2012/03/3409.html

19. Meeraus, A.: Globallib (2013). URL http://www.gamsworld.org/global/globallib.htm.
[Online; accessed 8-May-2013]

20. Mittelmann, H.D.: An independent benchmarking of SDP and SOCP solvers. Mathemat-
ical Programming 95(2), 407–430 (2003). doi:10.1007/s10107-002-0355-5

21. Mittelmann, H.D.: DTOS – A service for the optimization community. SIAG/OPT Views-
and-News 18, 17–20 (2007)

22. Mittelmann, H.D.: Decision tree for optimization software (2013). URL http://plato.
asu.edu/guide.html. [Online; accessed 8-May-2013]

23. Mittelmann, H.D., Pruessner, A.: A server for automated performance analysis of bench-
marking data. Optimization Methods & Software 21(1), 105–120 (2006). doi:10.1080/
10556780500065366

24. SCIP development team: How to run automated tests with SCIP. URL http://scip.zib.
de/doc/html/TEST.shtml

25. Wikiquote: Winston churchill — wikiquote, (2013). URL http://en.wikiquote.org/w/
index.php?title=Winston_Churchill&oldid=1552921. [Online; accessed 8-May-2013]

http://cpaior2010.ing.unibo.it/?q=node/10
http://dx.doi.org/10.1016/j.orl.2013.08.007
http://dx.doi.org/10.1023/A:1008632215341
http://dx.doi.org/10.1287/ijoc.15.1.114.15159
http://dx.doi.org/10.1007/978-3-540-39901-8_17
http://www.coin-or.org
http://dx.doi.org/10.1145/355826.355833
http://dx.doi.org/10.1007/s101070100263
http://www.mcs.anl.gov/~more/cops
http://dx.doi.org/10.1137/040608015
http://www.gams.com/presentations/present_performance.pdf
http://dx.doi.org/10.1007/s12532-012-0045-0
http://www.gams.com/dd/docs/solvers/examiner.pdf
http://www.gams.com/dd/docs/solvers/examiner.pdf
http://gmplib.org
http://dx.doi.org/10.1007/s12532-011-0025-9
http://www.optimization-online.org/DB_HTML/2012/03/3409.html
http://www.optimization-online.org/DB_HTML/2012/03/3409.html
http://www.gamsworld.org/global/globallib.htm
http://dx.doi.org/10.1007/s10107-002-0355-5
http://plato.asu.edu/guide.html
http://plato.asu.edu/guide.html
http://dx.doi.org/10.1080/10556780500065366
http://dx.doi.org/10.1080/10556780500065366
http://scip.zib.de/doc/html/TEST.shtml
http://scip.zib.de/doc/html/TEST.shtml
http://en.wikiquote.org/w/index.php?title=Winston_Churchill&oldid=1552921
http://en.wikiquote.org/w/index.php?title=Winston_Churchill&oldid=1552921

	Introduction
	PAVER 1.0 Review
	Updated infrastructure
	Solution verification
	Subjectivity, reproducibility, and automation
	Example benchmarks
	Conclusions

