batchdes.gms : Optimal Design for Chemical Batch Processing

**Description**

A chemical batch process having three processing stages: mixing, reaction and centrifuge separation, produce two products. This model is used to determine the number and sizes of units to operate in parallel at each stage. The resulting model is nonlinear and mixed integer;

**References**

- Morari, M, and Grossmann, I E, Eds, Chemical Engineering Optimization Models with GAMS. Computer Aids for Chemical Engineering Corporation, 1991.
- Kocis, G R, and Grossmann, I E, Global Optimization of Nonconvex MINLP Problems in Process Synthesis. Industrial and Engineering Chemistry Research 27, 8 (1988), 1407-1421.

**Small Model of Type :** MINLP

**Category :** GAMS Model library

**Main file :** batchdes.gms

$TITLE Optimal Design for Chemical Batch Processing (BATCHDES,SEQ=119) $Ontext A chemical batch process having three processing stages: mixing, reaction and centrifuge separation, produce two products. This model is used to determine the number and sizes of units to operate in parallel at each stage. The resulting model is nonlinear and mixed integer; Morari, M, and Grossmann, I E, Eds, Chemical Engineering Optimization Models with GAMS. Computer Aids for Chemical Engineering Corporation, 1991. Kocis, G R, and Grossmann, I E, Global Optimization of Nonconvex MINLP Problems in Process Synthesis. Independent Engineering Chemical Research 27 (1988), 1407-1421. $Offtext Sets i products / a , b / j stages /mixer, reactor, centrifuge/ k potential number of parallel units / 1 * 3 / Scalar h horizon time (available time hrs) /6000./ vlow lower bound for size of batch unit /250./ vupp upper bound for size of batch unit /2500./ Parameters q(i) demand of product i / a 200000 b 150000 / alpha(j) cost coefficient for batch units / mixer 250. reactor 500. centrifuge 340. / beta(j) cost exponent for batch units / mixer 0.6 reactor 0.6 centrifuge 0.6 / * the parameters below are defined to obtain the original variables actv(j) actual volume (l) actb(i) actual batch sizes (kg) acttl(i) actual cycle times (hrs) actn(j) actual number of units in parallel coeff(k) represent number of parallel units ; coeff(k) = log(ord(k)) ; Table s(i,j) size factor for product i in stage j (kg per l) mixer reactor centrifuge a 2 3 4 b 4 6 3 Table t(i,j) processing time of product i in batch j (hrs) mixer reactor centrifuge a 8 20 4 b 10 12 3 Variables y(k,j) binary variable denoting stage existence v(j) volume of stage j (l) b(i) batch size of product i (kg) tl(i) cycle time of product i (hrs) n(j) number of units in parallel stage j cost total cost of batch processing units ($) ; Binary Variables y(k,j) ; Positive Variables v(j) , b(i) , tl(i) , n(j) ; Equations vol(i,j) calculate volume of stage j cycle(i,j) calculate cycle time of product i time time constraint units(j) calculate number of processing units per stage lim(j) limit selection to one number obj objective function definition ; * convexified formulation of model equations * volume requirement in stage j vol(i,j).. v(j) =g= log(s(i,j)) +b(i) ; * cycle time for each product i cycle(i,j).. n(j) + tl(i) =g= log(t(i,j)) ; * constraint for production time time.. sum(i , q(i) * exp(tl(i) - b(i))) =l= h ; * relating number of units to 0-1 variables units(j).. n(j) =e= sum(k , coeff(k) * y(k,j)) ; * only one choice for parallel units is feasible lim(j).. sum(k , y(k,j)) =e= 1 ; * defining objective function obj.. cost =g= sum(j ,alpha(j)*(exp(n(j) + beta(j)*v(j)))); Model batch / all / ; * bounds section v.lo(j) = log(vlow) ; v.up(j) = log(vupp); n.up(j) = log(3.) ; * tight lower bounds are computed below for cycle times and batch sizes Parameters tllow(i) lower bound on tl(i) tlupp(i) upper bound on tl(i) ; tllow(i) = smax(j, t(i,j) / exp(n.up(j))) ; tlupp(i) = smax(j, t(i,j) ) ; tl.lo(i) = log(tllow(i)) ; tl.up(i) = log(tlupp(i)) ; Parameters blow(i) lower bound on b(i) bupp(i) upper bound on b(i) ; blow(i) = q(i) * ( smax(j, t(i,j) / exp(n.up(j))))/ h; bupp(i) = min( q(i) , smin(j , exp(v.up(j))/s(i,j))) ; b.lo(i) = log(blow(i)) ; b.up(i) = log(bupp(i)) ; * initial point * binary variables set for 3 units per stage y.l(k,j) = 0.; y.l('3','mixer') = 1; y.l('3','reactor') = 1; y.l('3','centrifuge') = 1; n.l(j) = sum( k , coeff(k)* y.l(k,j) ) ; * batch sizes are set at the mid-point between bounds b.l(i) = (b.up(i) + b.lo(i))/2 ; v.l(j) = smax(i , log(s(i,j)) + b.l(i)) ; tl.l(i) = smax(j , log(t(i,j))-n.l(j)) ; Option optcr=0; Solve batch using minlp minimizing cost ; * converting variables into original form actv(j) = exp(v.l(j)) ; actb(i) = exp(b.l(i)) ; acttl(i) = exp(tl.l(i)); actn(j) = exp(n.l(j)) ; * optimal design Display actv, actb, acttl, actn ;