dice.gms : Non-transitive Dice Design

Description

```Probabilistic dice - an example of a non-transitive relation.
We want to design a set of dice with an integer number on each face
such that on average dice1 beats dice2, and dice2 on average beats
dice3 etc, but diceN has to beat dice1.

MIP codes behave very erratic on such a problem and slight
reformulations can result in dramatic changes in performance. Also
note the face value will be integers automatically.
```

References

• Gardner, M, The Colossal Book of Mathematics. WV Norton, New York, NY, 2001.
• Bosch, R A, Mindsharpener. Optima MP 70 (2003), 8-9.
• Bosch, R A, Monochromatic Squares. Optima MP 71 (2004), 6-7.

Large Model of Type : MIP

Category : GAMS Model library

Main file : dice.gms

``````\$title Non-transitive Dice Design (DICE,SEQ=176)

\$onText
Probabilistic dice - an example of a non-transitive relation.
We want to design a set of dice with an integer number on each face
such that on average dice1 beats dice2, and dice2 on average beats
dice3 etc, but diceN has to beat dice1.

MIP codes behave very erratic on such a problem and slight
reformulations can result in dramatic changes in performance. Also
note the face value will be integers automatically.

Gardner, M, Scientific American.

Robert A Bosch, Mindsharpener, Optima, MP Society Newsletter, Vol 70,
June 2003, page 8-9

Robert A Bosch, Monochromatic Squares, Optima, MP Society Newsletter,
Vol 71, March 2004, page 6-7

Keywords: mixed integer linear programming, dice designment, mathematics,
nontransitive dice
\$offText

Set
f    'faces on a dice' / face1*face6 /
dice 'number of dice'  / dice1*dice3 /;

Scalar
flo 'lowest face value'  / 1 /
fup 'highest face value'
wn  'wins needed - possible bound';

fup = card(dice)*card(f);
wn  = floor(0.5*sqr(card(f))) + 1;

Alias (f,fp), (dice,dicep);

Variable
wnx             'number of wins'
fval(dice,f)    'value of dice - will be integer'
comp(dice,f,fp) 'one if f beats fp';

Binary Variable comp;

fval.lo(dice,f) = flo;
fval.up(dice,f) = fup;
fval.fx("dice1","face1") = flo;

Equation
eq1(dice)      'count the wins'
eq3(dice,f,fp) 'definition of non-transitive relation'
eq4(dice,f)    'different face values for a single dice';

eq1(dice)..      sum((f,fp), comp(dice,f,fp)) =e= wnx;

eq3(dice,f,fp).. fval(dice,f) + (fup - flo)*(1 - comp(dice,f,fp)) =g= fval(dice++1,fp) + 1;

eq4(dice,f-1)..  fval(dice,f - 1) + 1 =l= fval(dice,f);

Model xdice / all /;

\$if set nosolve \$exit

xdice.resLim = 20;

solve xdice using mip max wnx;

option  fval:0;
display wn, fval.l;

Parameter rep1 'chance of winning against next';
rep1(dice,f) = 100*sum(fp, comp.l(dice,f,fp))/card(f);
rep1(dice,'chance') = sum(f, rep1(dice,f))/card(f);

option  rep1:0;
display rep1;
``````