gancns.gms : Macro-Economic Framework for India - CNS

Description

This general equilibrium model has been used to study the
adjustment policies of the Indian government in response to
internal and external shocks.

The original version, (GANGES,SEQ=97), was formulated as an
optimization model. However, the model consist of a set of
nonlinear equations and it has only one solution. This version
is formulated directly as a system of nonlinear equations using
the CNS = Constrained Nonlinear System model type.


Reference

  • Mitra, P K, and Tendulkar, S D, Coping with Internal and External Exogenous Shocks: India, 1973-74 to 1983-84. Tech. rep., The World Bank, 1986.

Large Model of Type : CNS


Category : GAMS Model library


Main file : gancns.gms

$title Macro-Economic Framework for India (GANCNS,SEQ=210)

$onText
This general equilibrium model has been used to study the
adjustment policies of the Indian government in response to
internal and external shocks.

The original version, (GANGES,SEQ=97), was formulated as an
optimization model. However, the model consist of a set of
nonlinear equations and it has only one solution. This version
is formulated directly as a system of nonlinear equations using
the CNS = Constrained Nonlinear System model type.


Mitra, P, and Tendulkar, S, Coping with Internal and External
Exogenous Socks: India. Tech. rep., The World Bank, 1986.

Keywords: constrained nonlinear systems, general equilibrium model, macro economics
$offText

$sTitle Set Definitions
Set
   i           '6 sectors of the economy'     / agricult  'agriculture sector'
                                                cons-good 'consumer goods sector'
                                                cap-good  'capital goods sector'
                                                int-good  'intermediate goods sector'
                                                pub-infr  'public infrastructure sector'
                                                service   'services sector'              /
   sa(i)       'agriculture sector'           / agricult /
   sc(i)       'capital goods sector'         / cap-good /
   si(i)       'public infrastructure sector' / pub-infr /
   ss(i)       'services sector'              / service  /
   im(i)       'importing sectors'
   ie(i)       'exporting sectors'
   manufact(i) 'manufacturing sectors'        / cons-good, cap-good, int-good /
   ty          'income categories'
               / yself 'self-employment income'
                 ywage 'wage income'
                 ycap  'land or capital income'
                 yinfr 'income from government subsidies via infrastructure'
                 ynonp 'non-production income'                               /
   li(ty)      'production income categories';

li(ty)      = yes;
li("ynonp") = no;

Set
   r        'regions'
            / urban 'urban regions'
              rural 'rural regions' /
   ri(r,i)  'mapping between regions and sectors'
            / rural.agricult
              urban.(cons-good,cap-good,int-good,pub-infr,service) /
   datvar   'input variables'
            / return-cap 'income from capital investments'
              return-inf 'income from infrastructure'
              self-empl  'income from self employment'
              wage-labor 'income from wage and labor'
              dom-inter  'domestically produced intermediate goods'
              imp-inter  'imported intermediate goods'
              pub-cons   'public consumption (domestic and imported)'
              fix-inv    'fixed capital investments (domestic and imported)'
              change-sto 'change in stock'
              cons-imp   'household consumption - imported'
              xvoli      'constant term used in calculating export volume'   /
   taxvar   'tax variables'
            / dom-inter  'indirect taxes on domestic intermediate inputs'
              imp-inter  'indirect taxes on imported intermediate inputs'
              dom-cons   'total taxes on final domestic consumption'
              imp-cons   'total taxes on final imported consumption'
              profits    'total taxes on profits'
              self-emp   'total taxes on self-employment income'
              tax-wage   'total taxes on wage income'                       /
   stockvar 'stock variables'
            / capital    'total capital stock         (millions of rupees)'
              infrast    'total infrastructure stock  (millions of rupees)'
              wage-labor 'total labor force          (millions of persons)'
              self-empl  'total self-employment      (millions of persons)' /
   sigma    'elasticity of substitution parameters'
            / sigmax     'between final demands for domestic and imported capital goods'
              sigmaz     'between value added and intermediate inputs'
              sigman     'between domestic and imported intermediate inputs'
              sigmav     'between capital. self-employment and wage labor'
              sigmas     'between land and agriculture labor'
              eta        'export elasticity'                                             /;

Alias (i,j), (ty,tz), (manufact,manuf);

Set
   acv      'gdp expenditure categories'
            / ndp      'net domestic product'
              gdp      'gross domestic product'
              privc    'private consumption'
              gdpmp    'gdp at market prices'
              govc     'government consumption'
              gfi      'gross fixed investment'
              chan-sto 'change in stock'
              invest   'total of gfi and change in stock'
              exports  'exports'
              imports  'imports'                          /
   indicat  'target indicators at constant prices'
            / gdpmp    'gdp at market prices'
              privc    'private consumption'
              gfi      'fixed investment'
              invest   'investment and change in stock'
              exports  'total exports'
              imports  'total imports'
              gdpgrt   'growth rate of gdp at market prices'
              cnsgrt   'growth rate of private consumption'
              gfigrt   'growth rate of fixed investment'
              invgrt   'growth rate of total investment'
              expgrt   'growth rate of exports'
              impgrt   'growth rate of imports'
              cnsshr   'consumption to gdp at market prices ratio'
              gfishr   'gfi to gdpmp ratio'
              expshr   'exports to gdpmp ratio'
              impshr   'imports to gdpmp ratio'                    /
   years    'time horizon for tracking'
            / 7374     '1973-74  --  base  year'
              7475     '1974-75'
              7576     '1975-76'
              7677     '1976-77'
              7778     '1977-78'
              7879     '1978-79'
              7980     '1979-80'
              8081     '1980-81'
              8182     '1981-82'
              8283     '1982-83'
              8384     '1983-84   --  last year of tracking' /
   t(years) 'current year';

t(years)  = no;
t("7374") = yes;

$sTitle Input Data Tables
Table dat(datvar,i) 'factor remuneration (current millions of rupees)'
                     agricult  cons-good  cap-good  int-good  pub-infr  service
   return-cap         64493.3     6406.5    5434.4    8567.9    4401.9  27677.2
   self-empl         148431.0     4937.3   13714.3    6488.8            38411.1
   wage-labor         48364.6    12560.5   16267.7   17072.2    9941.2  73786.0
   dom-inter          77681.1    68904.0   54658.1   47254.0    6872.7  48988.9
   imp-inter           2356.0     3201.3    2307.3    9801.7       1.3    572.0
   pub-cons             816.9      544.0    4730.1    4423.9    2986.2  36832.5
   fix-inv              623.9      139.5   76198.8    2970.4     252.1   5076.3
   change-sto          7092.5     5944.2    1756.4    6073.7     272.2
   cons-imp            3159.9      504.3    5235.6              4170.9
   xvoli               2977.8    10046.2     990.9    5984.0                   ;

im(i) = yes$dat("cons-imp",i);
ie(i) = yes$dat("xvoli",i);

Table rate(*,i) 'various tax and margin rates              (unitless)'
                 agricult  cons-good  cap-good  int-good  pub-infr  service
   dep-prof       0.0729     0.2369    0.4319    0.1921    0.7191    0.3166
   dep-lab        0.0106     0.0832    0.0094    0.0958              0.0761
   taxrat-dom     0.0212     0.0865    0.0972    0.1212    0.1268    0.1056
   taxrat-imp     0.3134     0.1629    0.4247    0.2790    0.8461    0.6715
   taxrfd-dom   - 0.0013     0.32      0.40      0.40
   taxrfd-imp     0.0731     0.6728    0.3781    0.7236
   tradm-fd       0.14480    0.01368                       0.03103
   tradm-exp      0.16257    0.50      0.33460   0.13017
   tradm-imp                           0.50      0.07130                   ;

Table tax(taxvar,i) 'tax data            (current millions of rupees)'
               agricult  cons-good  cap-good  int-good  pub-infr  service
   dom-inter     1649.8     5964.3    5314.1    5727.0     871.5   5171.3
   imp-inter      738.5      521.6     989.2    2734.6       1.1    384.1
   dom-cons     -5570.9    16739.9    2303.2    4032.0      47.1    318.8
   imp-cons       231.0      339.7    1979.6    1079.0
   profits                   704.7     597.8     942.5     484.2   3044.5
   self-emp                  222.2     617.1     292.0             1728.5
   tax-wage                  565.2     732.0     768.2     447.4   3320.4;

Table stock(stockvar,i) 'stock data      (current millions of rupees)'
                  agricult  cons-good   cap-good   int-good    pub-infr     service
   capital      515946.4    29570.0    43475.2    68543.2    168695.0    417500.0
   infrast        1881.2     1403.9     2145.8     9995.2      4621.0      2694.2
   wage-labor       43.325      1.697      2.198      2.307       1.343       9.971
   self-empl       132.735      3.545      9.847      4.659                  27.578;

Table elast(sigma,i) 'elasticity parameters                (unitless)'
            agricult  cons-good  cap-good  int-good  pub-infr  service
   sigmax        0.5        0.5       0.5       0.5       0.5      0.5
   sigmaz        0.9        1.1       1.1       1.1       1.1      1.1
   sigman        1.5        1.5       1.5       1.5       1.5      1.5
   sigmav        0.9        0.7       0.7       0.7       0.7      0.7
   sigmas        0.5        0.7       0.7       0.7       0.7      0.7
   eta           1.5        1.5       1.0       1.5                1.0;

Table a(i,j) 'domestic input output coefficients matrix    (unitless)'
              agricult  cons-good  cap-good  int-good  pub-infr   service
   agricult   0.760190   0.549245  0.129944  0.112517  0.000146  0.206418
   cons-good  0.075543   0.196520  0.005262  0.036037  0.010709  0.026161
   cap-good   0.029948   0.012795  0.117179  0.039635  0.555240  0.112295
   int-good   0.062838   0.086158  0.522219  0.524852  0.100921  0.305633
   service    0.071481   0.155282  0.225396  0.286959  0.332984  0.349493;

Table am(i,j) 'imports input output coefficients matrix    (unitless)'
               agricult  cons-good  cap-good  int-good  pub-infr  service
   agricult    0.0011     0.843906            0.027276
   cons-good   0.002833   0.127355  0.000087  0.045681
   cap-good               0.000387  0.081846  0.006631  0.048316  0.00056
   int-good    0.996067   0.028352  0.918067  0.920412  0.951684  0.99944;

Table ayi(i,r) 'shares for allocation of sectoral income to regions (unitless)'
                rural
   agricult    1.0
   cons-good    .4635
   service      .4635;

ayi(i,"urban") = 1 - ayi(i,"rural");

Parameter ayt(r) 'shares for allocation of transfers to regions (unitless)' / rural .8 /;

ayt("urban") = 1 - ayt("rural");

Table ac(i,r) 'expenditure shares (unitless)'
                  urban     rural
   agricult    0.32629   0.482105
   cons-good   0.257648  0.26756
   cap-good    0.028424  0.02644
   int-good    0.039263  0.015185
   pub-infr    0.011206  0.00897
   service     0.337169  0.19974 ;

Table gamma(i,r) 'per capita committed consumption (units)'
                  urban     rural
   agricult    2.228551  2.037878
   cons-good   0.300443  0.332562
   cap-good    -.02261   0.002407
   int-good    0.096637  0.128932
   pub-infr    0.07928   0.092737
   service     -.59266   0.064369;

Table conpar(*,r) 'various consumer parameters'
                   urban     rural
   alpha        0.376842  0.309118
   beta         0.76777   0.77814
   pop          122.      458.    ;

Table baseprice(i,*) 'base year prices'
                      pv00        v00    pk00    pg00    pc00    pq00
   agricult         1.0050  2616.0656  0.1258  1.0076  1.1483  1.0042
   cons-good        1.0155   249.8925  0.2320  1.1071  1.3423  1.0064
   cap-good         0.9617   303.6711  0.1001  0.7277  1.3668  0.9763
   int-good         0.9820   310.7917  0.1180  0.9207  1.3761  0.9829
   pub-infr         1.0500   157.2187  0.0306  1.2566  1.0977  1.0647
   service          1.0045  1443.4865  0.0691  1.0624  1.0023  1.0023;

Scalar
   nct  'net current transfer'       /  19.20 /
   nfi  'net factor income'          / -32.50 /
   gtra 'interest on national debt'  /  46.7  /
   gtrb 'domestic current transfers' /  90.9  /;

$sTitle Time Series of exogenous Data
Table series(*,years) 'exogenous data series'
                   7374    7475    7576    7677    7778    7879     7980     8081     8182     8283     8384
   cg           503.336  511.10  645.46  697.87  702.24  750.71   754.74   809.06   856.64   971.38  1008.49
   xsa            1.000   .9366  1.1158   .9504  1.1097  1.0306    .8981   1.1041   1.0356   0.9796   1.1364
   er             7.791   7.796   8.653   8.939   8.563   8.206    8.076    7.893    8.929    9.628   10.312
   usdefl        1.0000  1.0878  1.1862  1.2539  1.3274  1.4259   1.5469   1.6845   1.8422   1.9595   2.0354
   indefl        1.0000  1.1665  1.1181  1.1948  1.2395  1.2648   1.4572   1.6157   1.7789   1.9119   2.1381
   savf            47.9    96.1    57.9  -103.1   -90.3   -57.5    -29.9    199.6    241.2    237.0    265.0
   gtra           47.70   34.00   49.10   60.10   69.70   93.40   100.80   149.00   184.20   270.40   270.40
   gtrb           90.90  115.00  135.00  154.70  176.20  200.50   239.20   283.50   331.10   400.50   400.50
   nfi           -32.50  -29.10  -25.50  -23.30  -23.30  -15.60    15.30    29.80     -.70   -68.10   -68.10
   nct            19.20   27.40   52.80   73.90  102.20  104.20   162.40   225.70   222.10   252.70   252.70
   dmsa           31.60   40.69   59.36   39.79    5.68    3.76     3.74     3.90    15.51    13.69    21.66
   dmco            5.04    1.76    2.28    5.68   21.95   13.64     8.62    20.23    16.48    11.93    16.31
   dmsi           41.71   42.14   40.96   42.23   43.62   44.06    48.47    48.85    46.00    40.42    29.07
   idshr         0.7954  0.7604  0.8201  0.8746  0.9281  0.8280   0.8111   0.8253   0.8346   0.8575   0.8583
   const        133.125  134.88  136.67  138.47  140.31  142.17   144.05   145.96   147.91  149.885   152.64
   totlab         65.09   67.88   70.75   73.75   76.84   80.06    83.39    86.84    90.43    95.14    97.10
   pkvsa         0.1807  0.1537  0.1511  0.2071  0.2071  0.2080   0.1845   0.1861   0.1696   0.1585   0.1605
   pkvni         0.2909  0.3703  0.2967  0.2322  0.2752  0.2912   0.3356   0.2924   0.3038   0.2777   0.2725
   pkvsi         0.1167  0.1350  0.1827  0.1761  0.1830  0.1504   0.1770   0.1825   0.1952   0.2549   0.2457
   pkvss         0.4117  0.3411  0.3695  0.3846  0.3346  0.3505   0.3029   0.3390   0.3314   0.3092   0.3213
   pim1          1.0000  1.2582  1.5165  1.4615  1.4451  1.5495   1.8956   1.7261   1.5030   1.3932   1.3841
   pim2          1.0000  1.9203  1.5072  1.6667  1.4783  1.4710   1.8261   1.1915   1.3386   1.1637   1.2940
   pim3          1.0000  1.3826  1.8261  2.0174  1.7913  2.2957   2.7826   1.9146   1.6529   1.6123   1.5498
   pim4          1.0000  1.6423  1.9238  1.6655  1.6548  1.6830   1.9890   1.9275   2.0165   2.0239   2.0025
   pim5          1.0000  2.2036  2.4820  2.7695  2.8593  2.8533   4.5350   6.8905   8.1604   7.7164   6.9373
   pim6          1.0000  1.0000  1.0000  1.0000  1.0000  1.0000   1.0000   1.0000   1.0000   1.0000   1.0000
   pie1          1.0000  1.3202  1.3051  1.3065  1.9159  1.3546   0.8066   1.3053   1.5555   1.2789   1.2691
   pie2          1.0000  1.2412  1.3048  1.5450  1.8197  1.8975   1.9845   2.0995   2.2128   2.1709   2.0801
   pie3          1.0000  0.8929  1.2857  1.2929  1.3857  1.3286   1.5500   1.3552   1.6076   1.5771   1.5111
   pie4          1.0000  1.3776  1.4375  1.4746  1.4763  1.4986   1.6509   1.7620   2.0759   2.0366   1.9914
   totpu         122.00  124.89  129.90  134.85  140.05  145.70   151.39   157.26   163.23   169.38   175.89
   totpr         458.00  468.11  477.10  485.15  493.95  503.30   512.61   521.74   530.77   539.62   549.11
   gdpmp         5944.2                                                                      8611.2   9261.9
   privc         4340.3  4157.8  4311.7  4206.7  4847.8  4981.0   4479.0   4961.4   5280.9   5460.3   5940.0
   gfi            902.9   917.9  1182.3  1314.2  1394.7  1481.2   1456.4   1610.0   1715.0   1785.1   1895.1
   invest        1135.2  1207.2  1441.6  1502.6  1502.8  1788.9   1795.5   1950.9   2054.8   2081.8   2207.9
   exports        283.0   306.0   356.6   426.8   410.5   444.0    518.5    517.0    516.2    532.9    559.1
   imports        317.6   275.9   279.2   278.7   363.1   394.1    377.9    554.4    598.6    599.9    624.6
   cns-curr      4340.3
   gfi-curr       902.9  1093.0  1324.8  1526.7  1714.6  1882.5   2090.2   2521.7   2971.6   2971.6   2971.6
   inv-curr      1135.2  1450.9  1641.8  1766.9  1854.8  2293.3   2622.8   3144.3   3668.0   3668.0   3668.0
   gdpmp-curr    5944.2  6968.1  7202.3  7586.7  8716.1  9610.3  10120.4  11989.6  14161.5  14161.5  14161.5
   exp-curr       283.0   383.5   481.2   613.9   663.6   711.5    838.1    902.9   1025.3   1025.3   1025.3
   imp-curr       317.6   477.9   566.4   561.4   652.2   742.6    985.9   1357.9   1487.9   1487.9   1487.9
   cns-defl      1.0000  1.2019  1.1389  1.1759  1.2342  1.2820   1.4608   1.6117   1.7851   1.7851   1.7851
   gdpc          5377.2  5423.5  5936.0  5981.1  6508.0  6882.3   6518.0   7030.2   7406.3   7534.4   7958.1
   ax1                1   .9677  1.0504   .9931  1.0141  1.0149    .9884   1.0823   1.0238    .9726   1.0623
   ax2                1  1.2461  1.2442  1.2179  1.3060  1.5719   1.7899   1.7452   1.6679   1.8441   1.8293
   ax3                1  1.1884  1.3716  1.6430  1.6913  1.6744   1.9078   1.4786   1.5309   2.0376   1.8724
   ax4                1   .7520   .5640   .7232   .8045   .8531    .6947    .5982    .6997    .7295    .7110
   ax5                1   .7509   .5631   .6157   .6351   .5144    .3781    .4568    .5778    .5619    .7504
   ax6                1   .9837   .7377   .8285   .9107   .8105    .7230    .7224    .7740    .7775    .7132
   exscale            1   .9000  1.0890  1.1165  1.0487  1.0540   1.0337    .8801   1.1469   1.2994   1.2439
   betar              1       1  1.0372  1.0554  1.1103  1.0940    .9958    .9817    .9359    .9576   1.0020
   betau              1       1   .9000   .8100   .8930   .8930    .8037    .8941   1.1175   1.1052   1.1100
   thetai                .12098  .53921  .16502  .14852  .16845   .19778   .16345   .12949   .17234   .18768;

series("cns-curr",years) = series("privc",years)*series("cns-defl",years);
series("pim1",years) = series("pim1",years)/series("usdefl",years);
series("pim2",years) = series("pim2",years)/series("usdefl",years);
series("pim3",years) = series("pim3",years)/series("usdefl",years);
series("pim4",years) = series("pim4",years)/series("usdefl",years);
series("pim5",years) = series("pim5",years)/series("usdefl",years);
series("pim6",years) = series("pim6",years)/series("usdefl",years);
series("pie1",years) = series("pie1",years)/series("usdefl",years);
series("pie2",years) = series("pie2",years)/series("usdefl",years);
series("pie3",years) = series("pie3",years)/series("usdefl",years);
series("pie4",years) = series("pie4",years)/series("usdefl",years);

$sTitle Parameter Declarations
Parameter
   pie(i)     'international prices                              (rp per unit)'
   pim(i)     'import prices by commodity                        (rp per unit)'
   dw(r)      'initial wage rates                                (rp per unit)'
   dcpi(r)    'initial cpi                                      (rp per unit)'
   k(i)       'capital and land                                       (units)'
   dg(i)      'initial infrastructure input by sector                 (units)'
   totlab     'total employment in urban sectors                      (units)'
   dsa(i)     'stock available from last year                         (units)'
   aq(sc)     'scaling for q-production function                   (unitless)'
   az(i)      'scaling for z-production function                   (unitless)'
   an(i)      'scaling for n-production function                   (unitless)'
   as(i)      'scaling for s-production function                   (unitless)'
   av(i)      'scaling for v-production function                   (unitless)'
   aex(i)     'scale of export demands                                (units)'
   depp(i)    'depreciation rate for land or capital income        (unitless)'
   depl(i)    'depreciation rate for self-employment income        (unitless)'
   trmd(i)    'trade margin rate on domestic demand                (unitless)'
   trmx(i)    'trade margin rate on exports                        (unitless)'
   trmm(i)    'trade margin rate on imports                        (unitless)'
   thetak(i)  'enterprise savings rates                            (unitless)'
   ratinf     'share of infrastructure in output of pub-infr       (unitless)'
   idshr      'share of gross fixed investment in total investment (unitless)'
   dstshr     'share of change in stock in total investment        (unitless)'
   aid(i)     'sector i share of gross fixed investment            (unitless)'
   adst(i)    'sector i share of change in stocks                  (unitless)'
   cg(i)      'government demand                                      (units)'
   deltaq(sc) 'share parameter for q                               (unitless)'
   deltax(i)  'share parameter for x                               (unitless)'
   deltaz(i)  'share parameter for z                               (unitless)'
   deltan(i)  'share parameter for n                               (unitless)'
   deltas(i)  'share parameter for s                               (unitless)'
   deltav(i)  'share parameter for v                               (unitless)'
   sigmaq(sc) 'elasticity of substitution between  x and  m        (unitless)'
   sigmax(i)  'elasticity of substitution between  z and  g        (unitless)'
   sigmaz(i)  'elasticity of substitution between  v and  n        (unitless)'
   sigman(i)  'elasticity of substitution between nd and nm        (unitless)'
   sigmav(i)  'elasticity of substitution between  s and lw        (unitless)'
   sigmas(i)  'elasticity of substitution between  h and ls        (unitless)'
   rhoq(sc)   'ces function exponent for q                         (unitless)'
   rhox(i)    'ces function exponent for x                         (unitless)'
   rhoz(i)    'ces function exponent for z                         (unitless)'
   rhon(i)    'ces function exponent for n                         (unitless)'
   rhov(i)    'ces function exponent for v                         (unitless)'
   rhos(i)    'ces function exponent for s                         (unitless)'
   alpha(r)   'intercept of housejold expenditure function         (unitless)'
   pop(r)     'population by region                                   (units)'
   eta(i)     'export elasticity                                   (unitless)'
   mu         'social weight on equity                             (unitless)'
   psi        'weight for private utility in obj                   (unitless)'
   ksi        'weight for investment in obj                        (unitless)'
   er         'exchange rate                                       (rp per $)'
   usdefl     'gdp deflator for us dollar                          (unitless)'
   indefl     'gdp deflator for indian rupee                       (unitless)';

Parameter
   rcons(*,acv)  'gdp expenditure by sector (constant prices)'
   rcurr(*,acv)  'gdp expenditure by sector (current prices)'
   er0           'foreign exchange rate in previous period            (rp per $)'
   pim0(i)       'import prices in previous period                 (rp per unit)'
   pnm0(i)       'price of intermediate imports in previous period (rp per unit)'
   pc0(i)        'consumer prices in previous period               (rp per unit)'
   v0(i)         'value added in previous period                         (units)'
   pv0(i)        'prices of value added in previous period         (rp per unit)'
   pls0(r)       'wage of self-employment in previous period       (rp per unit)'
   pk0 (i)       'return on land or capital in previous period     (rp per unit)'
   pq0 (i)       'price of output in previous year                 (rp per unit)'
   ax0(i)        'previous period ax                                  (unitless)'
   beta0(r)      'previous period beta                                (unitless)'
   exscale0      'previous period exscale                             (unitless)'
   gdptg         'gdpmp - target'
   cnstg         'private consumption - target'
   gfitg         'fixed investments - target'
   invtg         'total investments - target'
   exptg         'exports - target'
   imptg         'imports - target'
   gdppr         'gdp at market prices in previous period'
   cnspr         'private consumption in previous period'
   gfipr         'fixed investments in previous period'
   invpr         'total investments in previous period'
   exppr         'exports in previous period'
   imppr         'imports in previous period'
   pim00(i)      'import prices - base year                        (rp per unit)'
   pnm00(i)      'price of intermediate imports in base period     (rp per unit)'
   k00(i)        'land and capital in base period                        (units)'
   er00          'exchange rate in base period (1973-74)              (rp per $)'
   mc00(r)       'mean per capita consumption in base period           (current)'
   v00(i)        'value added in base period                             (units)'
   pv00(i)       'price of v in base period                        (rp per unit)'
   pc00(i)       'consumer prices in base period                   (rp per unit)'
   pg00(i)       'price of infrastructure in base period           (rp per unit)'
   pls00(r)      'wage of self-employment in base period           (rp per unit)'
   w00(r)        'wage rates of organized labor in base period     (rp per unit)'
   pk00(i)       'return to land or capital in base period         (rp per unit)'
   pq00(i)       'output prices in base period                     (rp per unit)'
   gdp00         'gdpmp in base period'
   cns00         'private consumption in base period'
   gfi00         'fixed investments in base period'
   inv00         'investments in base period'
   exp00         'exports in base period'
   imp00         'imports in base period'
   c00(r)        'base year consumption by region'
   cg0(i)        'base year public consumption'
   ytotal(*,*,*) 'income totals for urban-rural-total'
   conex(*,r)    'per capita consumption'
   pcinc(*,r)    'per capita income'
   savrat(*,r)   'savings ratio'
   totco(*,*)    'total consumption by sector (quantity and value at constant prices)'
   shrco(i,r)    'shares of consumption by sector and class (constant prices)'
   elsup(*)      'elasticities of supply'
   elcon(*,*,*)  'elasticities of consumption'
   ut1(r)        'utility at current period'
   ut0(r)        'utility at base period'
   cli(*)        'cost of living index (with respect to base period)'
   taxdir        'tax revenue -- direct'
   taxind        'tax revenue -- indirect'
   taximp        'tax revenue -- net import duty'
   infras        'income from infrastructure'
   govr          'net tax revenue + infrastructure income'
   govsav        'government savings'
   tgovr         'savg + infrastructure income'
   govtrn        'government transfer'
   govcon        'government consumption'
   govex         'government expenditure'
   gap           'defined as (govr - govex - tgovr)'
   dsapq(*)      'dsa*pq'
   totdepr       'total depreciation (capital and self-employment income)'
   deprec0(i)    'depreciation evaluated at previous years prices'
   gva(*)        'gross value added'
   gdp(*)        'gross domestic product'
   grthr(acv)    'growth ratios of constant price components of gdp'
   deflnac       'deflators comparable to nac deflators (based on previous year)'
   dflnacb(i)    'price deflators relative to base period'
   relnacb0(i)   'relative price deflators in base period'
   relnacb(i)    'relative price deflators in current period'
   chgnacb(i)    'change in relative price deflators'
   exppi         'export price index'
   imppi         'import price index'
   tradeterm     'terms of trade'
   xparm(*,*)    'parameters for static experiments'
   match(*,*)    'actual and target values'
   parm(*,*)     'current values of parameters'
   pkv(i)        'b matrix coefficients'
   chgv(i)       'change in v';

$sTitle Variable Declarations
Variable
   x(i)      'gross output                                        (units)'
   g(i)      'flow of infrastructure                              (units)'
   q(i)      'aggregate supply                                    (units)'
   pq(i)     'price of final output                         (rp per unit)'
   m(i)      'final import demands                                (units)'
   pm(i)     'post-tax and trade margin import prices       (rp per unit)'
   z(i)      'z output                                            (units)'
   v(i)      'value added                                         (units)'
   n(i)      'intermediate net of infrastructure                  (units)'
   px(i)     'price of output                               (rp per unit)'
   pz(i)     'price of z                                    (rp per unit)'
   s(i)      'value added subaggregate                            (units)'
   lw(i)     'employment of wage labor                            (units)'
   pv(i)     'price of value added                          (rp per unit)'
   ls(i)     'self employment labor                               (units)'
   ps(i)     'price of s output                             (rp per unit)'
   pnd(i)    'price of domestic intermediate                (rp per unit)'
   w(r)      'wage rates of organized labor                 (rp per unit)'
   cpi(r)    'consumer price index                          (rp per unit)'
   pls(r)    'wage rate of self employment labor            (rp per unit)'
   pnm(i)    'price of intermediate imports                 (rp per unit)'
   pn(i)     'price of intermediate goods                   (rp per unit)'
   pk(i)     'return to capital                             (rp per unit)'
   pc(i)     'price of consumer goods                       (rp per unit)'
   fd(i)     'domestic final demand                               (units)'
   nd(i)     'domestic intermediate goods                         (units)'
   nm(i)     'import intermediate goods                           (units)'
   marg      'trade margin service demand                         (units)'
   pg(i)     'rent for infrastructure                       (rp per unit)'
   y(ty,i)   'factor income for sectors of economy              (current)'
   fy(ty,i)  'fixed price factor income                    (base year rp)'
   wtr(ty)   'world transfers                                   (current)'
   gtr(ty)   'government transfers                              (current)'
   fwtr(ty)  'fixed price world transfers                  (base year rp)'
   fgtr(ty)  'fixed price government transfers             (base year rp)'
   yh(ty,r)  'income by region and income type                  (current)'
   fyh(ty,r) 'fixed price income by region and income type (base year rp)'
   ym(r)     'mean per capita real income by region               (units)'
   mc(r)     'mean per capita real consumption                    (units)'
   ch(i,r)   'private consumption                                 (units)'
   savh(r)   'household savings                                 (current)'
   savf      'foreign savings                                 (current $)'
   savg      'government savings                                (current)'
   ex(i)     'total exports                                       (units)'
   invtot    'total gross investments                             (units)'
   id(i)     'investment demand by sector                         (units)'
   dst(i)    'changes in stock by sector                          (units)'
   ax(i)     'efficiency variable                              (unitless)'
   exscale   'scaling of export demand                         (unitless)'
   tnd(i)    'tax rate on domestic intermediate                (unitless)'
   tnm(i)    'tax rate on imported intermediate                (unitless)'
   tfd(i)    'tax rate on final demand                         (unitless)'
   tfm(i)    'import tax rate                                  (unitless)'
   tk(i)     'tax rate on capital (profits)                    (unitless)'
   tw(i)     'tax rate on wages (income tax)                   (unitless)'
   thetai    'infrastructural savings rate                     (unitless)'
   taum(i)   'implicit tax on imports due to price differences (unitless)'
   lambda(r) 'rate of wage adjustment parameter                (unitless)'
   beta(r)   'slope of household expenditure function          (unitless)'
   util(r)   'regional per capita utility                         (utils)'
   utility   'objective value                                     (utils)';

Positive Variable pk;

Variable
   dumtg       'sum of square deviations                  (absolute)'
   dumgrt      'sum of square deviations in tracking'
   dumshr      'sum of square deviations                 (on shares)'
   ogdpmp      'model generated gdp at market prices'
   ogdp        'model generated gdp at factor prices'
   ocns        'model generated private consumption'
   ogfi        'model generated gross fixed investment'
   ochs        'model generated stock changes'
   oinv        'model generated total investment'
   oexp        'model generated exports'
   oimp        'model generated imports'
   deprec00(i) 'depreciation evaluated at base prices (base year rp)'
   deprec(i)   'depreciation evaluated at current prices   (current)';

$sTitle Compute Parameters and Coefficients
mu  = 1;
psi = 1;
ksi = 7;

pie(i)   = 1;
pim(i)   = 1;
pim00(i) = pim(i);
pg.l(i)  = 1;
pg00(i)  = baseprice(i,"pg00");
px.l(i)  = 1;
ps.l(i)  = 1;
pv.l(i)  = 1;
pn.l(i)  = 1;
pz.l(i)  = 1;
pq.l(i)  = 1;

dat(datvar,i)     = dat(datvar,i)/100;
tax(taxvar,i)     = tax(taxvar,i)/100;
stock(stockvar,i) = stock(stockvar,i)/100;

sigmax(i)  = elast("sigmax",i)*1.20;
sigmaq(sc) = 0.90;
sigmaz(i)  = elast("sigmaz",i)*1.20;
sigman(i)  = elast("sigman",i)*1.20;
sigmav(i)  = elast("sigmav",i)*1.20;
sigmas(i)  = elast("sigmas",i)*1.20;

* calculate rho from sigma using definition
rhox(i)  = 1/sigmax(i)  - 1;
rhoq(sc) = 1/sigmaq(sc) - 1;
rhoz(i)  = 1/sigmaz(i)  - 1;
rhon(i)  = 1/sigman(i)  - 1;
rhov(i)  = 1/sigmav(i)  - 1;
rhos(i)  = 1/sigmas(i)  - 1;
eta(i)   = elast("eta",i)*1.20;
k(i)     = stock("capital",i);
pk.l(i)  = dat("return-cap",i)/k(i);
pk00(i)  = baseprice(i,"pk00");

pls.l("rural") = 11.182506;
pls.l("urban") = 13.928;
pls00("rural") = 11.2507;
pls00("urban") = 13.7343;
ls.l(i) = stock("self-empl",i)*100;

display k, pk.l, pls.l, ls.l;

* calibrate deltas using firsts, s using values, and as using prods
deltas(i)$ls.l(i) = (k(i)/ls.l(i))**(1/sigmas(i))*pk.l(i)/sum(r$ri(r,i), pls.l(r));
deltas(i)$ls.l(i) = deltas(i)/(1 + deltas(i));
deltas(i)$(not ls.l(i)) = 1;
s.l(i) = dat("return-cap",i) + dat("self-empl",i);
as(i)  = s.l(i)*(deltas(i)*k(i)**(-rhos(i)) + ((1 - deltas(i))*ls.l(i)**(-rhos(i)))$(not si(i)))**(1/rhos(i));

display deltas, s.l, ps.l, as;

dw("rural") = 11.163208;
dw("urban") = 74.00;
w.l(r)  = dw(r);
w00(r)  = dw(r);
lw.l(i) = stock("wage-labor",i)*100;

display w.l, lw.l;
* calibrate deltav using firstv, v using valuev, and av using prodv
deltav(i) = (s.l(i)/lw.l(i))**(1/sigmav(i))*ps.l(i)/sum(r$ri(r,i), w.l(r));
deltav(i) = deltav(i)/(1 + deltav(i));
v.l(i)    = s.l(i) + dat("wage-labor",i);
av(i)     = v.l(i)*(deltav(i)*s.l(i)**(-rhov(i)) + (1 - deltav(i))*lw.l(i)**(-rhov(i)))**(1/rhov(i));
v00(i)    = baseprice(i,"v00");
pv00(i)   = baseprice(i,"pv00");

display deltav, v.l, pv.l, av;

* calibrate pnm using pnmdet
trmm(i)  = rate("tradm-imp",i);
tnm.l(i) = rate("taxrat-imp",i);
pnm.l(i) = sum(j, am(j,i)*pim(j)*(1 + trmm(j) + tnm.l(j)));
pnm0(i)  = pnm.l(i);
pnm00(i) = pnm.l(i);
nm.l(i)  = (dat("imp-inter",i)*(1 + trmm(i)) + tax("imp-inter",i))/pnm.l(i);

display trmm, tnm.l, pnm.l, nm.l;

* calibrate pnd using pnddet
tnd.l(i) = rate("taxrat-dom",i);
pnd.l(i) = sum(j, a(j,i)*pq.l(j)*(1 + tnd.l(j)));
nd.l(i)  = (dat("dom-inter",i) + tax("dom-inter",i))/pnd.l(i);

display tnd.l, pnd.l, nd.l;

* calibrate deltan using firstn, n using valuen, and an using prodn
deltan(i) = (nd.l(i)/nm.l(i))**(1/sigman(i))*pnd.l(i)/pnm.l(i);
deltan(i) = deltan(i)/(1 + deltan(i));
n.l(i)    = nd.l(i)*pnd.l(i) + nm.l(i)*pnm.l(i);
an(i)     = n.l(i)*(deltan(i)*nd.l(i)**(-rhon(i)) + (1 - deltan(i))*nm.l(i)**(-rhon(i)))**(1/rhon(i));

display deltan, n.l, pn.l, an;

* calibrate deltaz using firstz, z using valuez, and az using prodz
deltaz(i) = (v.l(i)/n.l(i))**(1/sigmaz(i))*pv.l(i)/pn.l(i);
deltaz(i) = deltaz(i)/(1 + deltaz(i));
z.l(i)    = n.l(i) + v.l(i);
az(i)     = z.l(i)*(deltaz(i)*v.l(i)**(-rhoz(i)) + (1 - deltaz(i))*n.l(i)**(-rhoz(i)))**(1/rhoz(i));

display deltaz, z.l, pz.l, az;

* calibrate deltax using firstx, x using valuex, and ax using prodx
g.l(i)    = stock("infrast",i);
dg(i)     = g.l(i);
deltax(i) = (z.l(i)/g.l(i))**(1/sigmax(i))*pz.l(i)/pg.l(i);
deltax(i) = deltax(i)/(1 + deltax(i));
x.l(i)    = z.l(i) + g.l(i);
ax.l(i)   = x.l(i)*(deltax(i)*z.l(i)**(-rhox(i)) +(1 - deltax(i))*g.l(i)**(-rhox(i)))**(1/rhox(i));

display g.l, deltax, x.l, ax.l;

* calibrate taum using pmdef and taumdet
pm.l(im)   = px.l(im);
tfm.l(i)   = rate("taxrfd-imp",i);
taum.l(im) = px.l(im)/pim(im) - (1 + trmm(im) + tfm.l(im));
taum.l(i)$(not im(i)) = 0;
taum.l(sc) = 0;
pm.l(im)   = pim(im)*(1 + trmm(im) + tfm.l(im) + taum.l(im));
m.l(im)    = dat("cons-imp",im);

display pm.l, taum.l, m.l;

* calibrate q using valueq, deltaq using firstq, and aq using prodq
q.l(i)     = x.l(i) + m.l(i);
q.l(sc)    = x.l(sc) + (1 + trmm(sc) + tfm.l(sc))*m.l(sc);
deltaq(sc) = (x.l(sc)/m.l(sc))**(1/sigmaq(sc))*px.l(sc)/pm.l(sc);
deltaq(sc) = deltaq(sc)/(1 + deltaq(sc));
aq(sc)     = q.l(sc)*(deltaq(sc)*x.l(sc)**(-rhoq(sc)) + (1 - deltaq(sc))*m.l(sc)**(-rhoq(sc)))**(1/rhoq(sc));
pq0(i)     = pq.l(i);
pq00(i)    = baseprice(i,"pq00");

display q.l, deltaq, pq.l;

dsa(i) = 0 ;
totlab = sum(i$(not sa(i)), ls.l(i) + lw.l(i));

* calibrate pc using pcdet
trmd(i)  = rate("tradm-fd",i);
tfd.l(i) = rate("taxrfd-dom",i);
pc.l(i)  = pq.l(i)*(1 + tfd.l(i) + trmd(i));
pc00(i)  = baseprice(i,"pc00");

* parameters for linear expenditure share estimation
alpha(r)  = conpar("alpha",r);
beta.l(r) = conpar("beta",r);
pop(r)    = conpar("pop",r);

* other parameters
tw.l(sa) = 0;
tw.l(i)$(not sa(i)) = 0.045;
tk.l(sa) = 0;
tk.l(i)$(not sa(i)) = 0.11;
thetak(si) = 1.0;
thetai.l   = 0;

usdefl = 1.0;
indefl = 1.0;
er00   = sum(t, series("er",t));
er     = er00;

* calibrate y, gtr and wtr using income determination equations
y.l("yself",i) = sum(r$ri(r,i), pls.l(r) )*ls.l(i)*(1 - tw.l(i));
y.l("ywage",i) = sum(r$ri(r,i), w.l(r))*lw.l(i)*(1 - tw.l(i));
y.l("ycap",i)  = pk.l(i)*k(i)*(1 - thetak(i))*(1 - tk.l(i));
y.l("yinfr",i) = pg.l(i)*g.l(i)*(1 - thetai.l);
gtr.l("ynonp") = (gtra + gtrb)/indefl;
wtr.l("ynonp") = (nct + nfi)*(er00/er)/usdefl;

* calibrate private consumption using yhdef, mean, meanc, and les
yh.l(ty,r)    =  sum(i, ayi(i,r)*y.l(ty,i)) + ayt(r)*(gtr.l(ty) + wtr.l(ty));
ym.l("urban") =  14.52382;
ym.l("rural") =  7.36096;
mc.l(r)       =  exp(alpha(r) + beta.l(r)*log(ym.l(r)));
ch.l(i,r)     = (pop(r)*(pc.l(i)*gamma(i,r) + ac(i,r)*(mc.l(r) - sum(j, pc.l(j)*gamma(j,r)))))/pc.l(i);
ch.lo(i,r)    =  pop(r)*gamma(i,r) + 0.1;
cpi.l(r)      = (sum(i, pc.l(i)*ch.l(i,r)))/sum(i, ch.l(i,r));
dcpi(r)       =  cpi.l(r);

* calibrate investment using iddet and dstdet
id.l(i)  = dat("fix-inv",i);
id.l(ss) = 0;
dst.l(i) = dat("change-sto",i)/pq.l(i);
invtot.l = sum(i, id.l(i) + dst.l(i));
idshr    = sum(i, id.l(i))/invtot.l;
dstshr   = sum(i, dst.l(i))/invtot.l;
aid(i)   = id.l(i)/sum(j, id.l(j));
adst(i)  = dst.l(i)/sum(j, dst.l(j));

* calibrate export demand using export
trmx(i) = rate("tradm-exp",i);
ex.l(i) = dat("xvoli",i)/pq.l(i);
aex(i)  = ex.l(i)/(er00*pie(i)/(pq.l(i)*(1 + trmx(i))))**eta(i);
cg(i)   = dat("pub-cons",i)/pc.l(i);

* calibrate fd using fddef, marg using margdet
fd.l(i) =  sum(r, ch.l(i,r)) + id.l(i) + cg(i);
marg.l  = (sum(i, trmd(i)*pq.l(i)*fd.l(i) + trmx(i)*pq.l(i)*ex.l(i)
        + (pim(i)*trmm(i)*m.l(i))$im(i)
        +  sum(j, am(j,i)*pim(j)*trmm(j))*nm.l(i)))/sum(ss, pq.l(ss));

* calibrate savings using budget constraints
savh.l(r) = sum(ty, yh.l(ty,r)) - sum(i, pc.l(i)*ch.l(i,r));
savg.l    = sum(i, sum(j, am(j,i)*tnm.l(j)*pim(j))*nm.l(i)
                 + sum(j, a(j,i)*pq.l(j)*tnd.l(j))
                 +((tfm.l(i) + taum.l(i))*pim(i)*m.l(i))$im(i)
                 + tw.l(i)*sum(r$ri(r,i), w.l(r))*lw.l(i)
                 + sum(r$ri(r,i), pls.l(r))*ls.l(i)*tw.l(i)
                 + tk.l(i)*pk.l(i)*k(i)*(1 - thetak(i))
                 + tfd.l(i)*pq.l(i)*sum(r, ch.l(i,r)))
          - sum(i, pq.l(i)*cg(i)) - sum(ty, gtr.l(ty));

lambda.l(r) = 1.0;
ratinf      = 0.758039594;
depp(i) = rate("dep-prof",i);
depl(i) = rate("dep-lab",i);

$sTitle Parameters for Objective Function
Parameter
   wtot   'weights sum'
   wgdp   'weight for gdp tracking'
   wcns   'weight for private consumption tracking'
   winv   'weight for investment tracking'
   wexp   'weight fot export tracking'
   wimp   'weight for import tracking'
   gdpgrt 'growth rate of gdp at market prices'
   cnsgrt 'growth rate of private consumption'
   gfigrt 'growth rate of fixed investment'
   invgrt 'growth rate of total investment'
   expgrt 'growth rate of exports'
   impgrt 'growth rate of imports'
   cnsshr 'ratio of consumption to gdp at market prices'
   gfishr 'ratio of gfi to gdp at market prices'
   expshr 'ratio of exports to gdp at market prices'
   impshr 'ratio of imports to gdp at market prices';

gdptg  = sum(t, series("gdpmp",t));
cnstg  = sum(t, series("privc",t));
gfitg  = sum(t, series("gfi",t));
invtg  = sum(t, series("invest",t));
exptg  = sum(t, series("exports",t));
imptg  = sum(t, series("imports",t));
gdpgrt = sum(t, series("gdpc",t)/series("gdpc",t));
cnsgrt = sum(t, series("privc",t)/series("privc",t));
gfigrt = sum(t, series("gfi",t)/series("gfi",t));
invgrt = sum(t, series("invest",t)/series("invest",t));
expgrt = sum(t, series("exports",t)/series("exports",t));
impgrt = sum(t, series("imports",t)/series("imports",t));
cnsshr = sum(t, series("privc",t))/gdptg;
gfishr = sum(t, series("gfi",t))/gdptg;
expshr = sum(t, series("exports",t))/gdptg;
impshr = sum(t, series("imports",t))/gdptg;

wgdp = 1.0;
wcns = 1.0;
winv = 1.0;
wexp = 1.0;
wimp = 1.0;
wtot = wgdp + wcns + winv + wexp + wimp;
wgdp = wgdp/wtot;
wcns = wcns/wtot;
winv = winv/wtot;
wexp = wexp/wtot;
wimp = wimp/wtot;

gdp00 = gdptg;
cns00 = cnstg;
gfi00 = gfitg;
inv00 = invtg;
exp00 = exptg;
imp00 = imptg;
gdppr = gdptg;
cnspr = cnstg;
gfipr = invtg;
invpr = invtg;
exppr = exptg;
imppr = imptg;

$sTitle Equation Declarations
Equation
   obj          'objective function                                           (utils)'
   objgrt       'objective function for growth rate tracking'
   qgdpmp       'determination of gdp at market prices'
   qgdp         'determination of gdp at factor prices'
   qcns         'determination of private consumption'
   qgfi         'determination of gross fixed investment'
   qchs         'determination of stock changes'
   qinv         'determination of total investment'
   qexp         'determination of exports'
   qimp         'determination of imports'
   qdep00(i)    'determination of depreciation at base year prices'
   qdep(i)      'determination of depreciation'
   valueq(i)    'value of final output of capital goods                     (current)'
   prodq(sc)    'ces production function for final output of capital goods    (units)'
   firstq(sc)   'first order condition for cost min of q                      (units)'
   pmdef(i)     'definition of post-tax import prices                   (rp per unit)'
   supply(i)    'total non-capital goods supply                               (units)'
   taumdet(i)   'determination of taum                                  (rp per unit)'
   infalloc(i)  'allocation of infrastructure                                 (units)'
   valuex(i)    'value of gross output                                      (current)'
   prodx(i)     'ces production function for gross output                     (units)'
   firstx(i)    'first order condition for profit max of gross output         (units)'
   valuez(i)    'value of ces z subaggregate                                (current)'
   prodz(i)     'ces production function for ces z subaggregate               (units)'
   firstz(i)    'first order condition for cost min of ces subaggregate       (units)'
   valuen(i)    'value of intermediate production                           (current)'
   prodn(i)     'ces production function for intermediates                    (units)'
   firstn(i)    'first order condition for cost min of intermediates          (units)'
   pnddet(i)    'determination of domestic intermediates price          (rp per unit)'
   pnmdet(i)    'determination of imported intermediates price          (rp per unit)'
   values(i)    'value of value added subaggregate                          (current)'
   prods(i)     'ces production function for value added subaggregate         (units)'
   firsts(i)    'first order condition for cost min of value added subagg     (units)'
   valuev(i)    'value added exemption                                      (current)'
   prodv(i)     'ces production function for value added                      (units)'
   firstv(i)    'first order condition for value added maximization           (units)'
   wdet(r)      'determination of wage of organized labor               (rp per unit)'
   lmclear      'non-agricultural labor market clearing                       (units)'
   pcdet(i)     'determination of consumer prices                       (rp per unit)'
   cpidet(r)    'determination of cpi                                   (rp per unit)'
   yself(i)     'determination of self employed income                      (current)'
   fyself(i)    'determination of self employed real income            (base year rp)'
   ywage(i)     'determination of labor income                              (current)'
   fywage(i)    'determination of labor real income                    (base year rp)'
   ycap(i)      'determination of capital and land income                   (current)'
   fycap(i)     'determination of capital and land real income         (base year rp)'
   yinfr(i)     'determination of infrastructure income                     (current)'
   fyinfr(i)    'determination of infrastructure real income           (base year rp)'
   wtrdet       'determination of transfers from abroad                     (current)'
   gtrdet       'determination of government transfers                      (current)'
   fwtrdet      'determination of real transfers from abroad           (base year rp)'
   fgtrdet      'determination of government real transfers            (base year rp)'
   yhdef(ty,r)  'definition of regional income                              (current)'
   fyhdef(ty,r) 'definition of regional real income                    (base year rp)'
   mean(r)      'mean per capita income determination                  (base year rp)'
   meanc(r)     'determination of mean per capita consumption          (base year rp)'
   les(i,r)     'linear expenditure system                                  (current)'
   iddet(i)     'allocation of gross fixed investment                         (units)'
   dstdet(i)    'allocation of stock changes                                  (units)'
   hbudget(r)   'household budget constraint                                (current)'
   gbudget      'government budget constraint                               (current)'
   fddef(i)     'definition of domestic final demands                         (units)'
   export(i)    'downward sloping export demand curves                        (units)'
   equil(i)     'market clearing conditions                                   (units)'
   margdet      'determination of total trade margins                       (current)'
   fbudget      'rest of the world budget constraint                        (current)'
   invsav       'investment savings equality                                (current)'
   utildef(r)   'definition of regional utility                               (utils)';

$sTitle Equations of the Model
* objective function
qdep00(i).. deprec00(i) =e= pk00(i)*k(i)*depp(i) + sum(r$ri(r,i), pls00(r)*ls(i)*depl(i));

qdep(i)..   deprec(i)   =e= pk(i)*k(i)*depp(i)   + sum(r$ri(r,i), pls(r)*ls(i)*depl(i));

qgdp..      ogdp =e= sum(i, pv00(i)*v(i)+deprec00(i));

qcns..      ocns =e= sum((i,r), pc00(i)*ch(i,r));

qgfi..      ogfi =e= sum(i, pc00(i)*id(i)  + deprec(i)*idshr*sum(j, pc00(j)*aid(j))/sum(j, pc(j)*aid(j)));

qchs..      ochs =e= sum(i, pq00(i)*dst(i) + deprec(i)*dstshr*sum(j, pc00(j)*aid(j))/sum(j, pc(j)*aid(j)));

qinv..      oinv =e= ogfi + ochs;

qexp..      oexp =e= sum(ie, ex(ie)*pq00(ie)*(1 + trmx(ie)));

qimp..      oimp =e= sum(i, (m(i)*pim00(i)*(1 + trmm(i)))$im(i) + nm(i)*pnm00(i));

qgdpmp..    ogdpmp =e= ocns + sum(i, pc00(i)*cg(i)) + oinv + oexp - oimp;

* production equations
valueq(i)..   q(i)*pq(i) =e= x(i)*px(i) + (m(i)*pm(i))$im(i);

prodq(sc)..   q(sc) =e= aq(sc)*(deltaq(sc)*x(sc)**(-rhoq(sc)) + (1 - deltaq(sc))*m(sc)**(-rhoq(sc)))**(-1/rhoq(sc));

firstq(sc)..  x(sc) =e= m(sc)*(pm(sc)*deltaq(sc)/(px(sc)*(1 - deltaq(sc))))**sigmaq(sc);

pmdef(im)..   pm(im) =e= pim(im)*(1 + trmm(im) + tfm(im) + taum(im));

supply(i)$(not sc(i))..    q(i)   =e= x(i) + m(i)$im(i);

taumdet(im)$(not sc(im)).. pm(im) =e= px(im);

valuex(i)..   x(i)*px(i) =e= g(i)*pg(i) + z(i)*pz(i);

prodx(i)..    x(i) =e= ax(i)*(deltax(i)*z(i)**(-rhox(i)) + (1 - deltax(i))*g(i)**(-rhox(i)))**(-1/rhox(i));

firstx(i)..   z(i) =e= g(i)*(pg(i)*deltax(i)/(pz(i)*(1 - deltax(i))))**sigmax(i);

valuez(i)..   z(i)*pz(i) =e= v(i)*pv(i) + n(i)*pn(i);

prodz(i)..    z(i) =e= az(i)*(deltaz(i)*v(i)**(-rhoz(i)) + (1 - deltaz(i))*n(i)**(-rhoz(i)))**(-1/rhoz(i));

firstz(i)..   v(i) =e= n(i)*(pn(i)*deltaz(i)/(pv(i)*(1-deltaz(i))))**sigmaz(i);

valuen(i)..   n(i)*pn(i) =e= nd(i)*pnd(i) + nm(i)*pnm(i);

prodn(i)..    n(i)   =e= an(i)*(deltan(i)*nd(i)**(-rhon(i)) + (1 - deltan(i))*nm(i)**(-rhon(i)))**(-1/rhon(i));

firstn(i)..   nd(i)  =e= nm(i)*(deltan(i)*pnm(i)/((1 - deltan(i))*pnd(i)))**sigman(i);

pnddet(i)..   pnd(i) =e= sum(j, a(j,i)*pq(j)*(1 + tnd(j)));

pnmdet(i)..   pnm(i) =e= sum(j, am(j,i)*pim(j)*(1 + trmm(j) + tnm(j)));

values(i)..   s(i)*ps(i) =e= k(i)*pk(i) + ls(i)*sum(r$ri(r,i), pls(r));

prods(i)..    s(i) =e= as(i)*(deltas(i)*k(i)**(-rhos(i)) + ((1 - deltas(i))*ls(i)**(-rhos(i)))$(not si(i)))**(-1/rhos(i));

firsts(i)$(not si(i))..
              k(i) =e= ls(i)*(sum(r$ri(r,i), pls(r))*deltas(i)/(pk(i)*(1 - deltas(i))))**sigmas(i);

valuev(i)..   v(i)*pv(i) =e= lw(i)*sum(r$ri(r,i), w(r)) + ps(i)*s(i);

prodv(i)..    v(i) =e= av(i)*(deltav(i)*s(i)**(-rhov(i)) + (1 - deltav(i))*lw(i)**(-rhov(i)))**(-1/rhov(i));

firstv(i)..   s(i) =e= lw(i)*(sum(r$ri(r,i), w(r))*deltav(i)/(ps(i)*(1 - deltav(i))))**sigmav(i);

lmclear..     totlab =e= sum(i$(not sa(i)), lw(i) + ls(i));

pcdet(i)..    pc(i)  =e= pq(i)*(1 + tfd(i) + trmd(i));

cpidet(r)..   cpi(r)*sum(i, ch(i,r)) =e= sum(i, pc(i)*ch(i,r));

* income generation
yself(i)..    y("yself",i)  =e= sum(r$ri(r,i), pls(r) )*ls(i)*(1 - tw(i));

ywage(i)..    y("ywage",i)  =e= sum(r$ri(r,i), w(r))*lw(i)*(1 - tw(i));

ycap(i)..     y("ycap",i)   =e= pk(i)*k(i)*(1 - thetak(i))*(1 - tk(i));

yinfr(i)..    y("yinfr",i)  =e= pg(i)*g(i)*(1 - thetai);

gtrdet..      gtr("ynonp")  =e= (gtra + gtrb)/indefl*sum(i, pv(i)*v(i))/sum(i, pv00(i)*v00(i));

wtrdet..      wtr("ynonp")  =e= (nct + nfi)*(er00/er)/usdefl*sum(i, pv(i)*v(i))/sum(i, pv00(i)*v00(i));

fgtrdet..     fgtr("ynonp") =e= (gtra + gtrb)/indefl;

fwtrdet..     fwtr("ynonp") =e= (nct + nfi)*(er00/er)/usdefl;

fyself(i)..   fy("yself",i) =e= sum(r$ri(r,i), pls00(r) )*ls(i)*(1 - tw(i));

fywage(i)..   fy("ywage",i) =e= sum(r$ri(r,i), w00(r))*lw(i)*(1 - tw(i));

fycap(i)..    fy("ycap",i)  =e= pk00(i)*k(i)*(1 - thetak(i))*(1 - tk(i));

fyinfr(i)..   fy("yinfr",i) =e= pg00(i)*g(i)*(1 - thetai);

yhdef(ty,r).. yh(ty,r)      =e= sum(i, ayi(i,r)*y(ty,i)) + ayt(r)*(gtr(ty) + wtr(ty));

fyhdef(ty,r).. fyh(ty,r)    =e= sum(i, ayi(i,r)*fy(ty,i)) + ayt(r)*(fgtr(ty) + fwtr(ty));

mean(r)..     ym(r)*pop(r)  =e= sum(ty, fyh(ty,r));

meanc(r)..    log(mc(r))    =e= alpha(r) + beta(r)*log(ym(r));

les(i,r)..    pc(i)*ch(i,r) =e= pop(r)*(pc(i)*gamma(i,r)
                             +  ac(i,r)*(mc(r) - sum(j, pc00(j)*gamma(j,r)))
                             *  prod(j, (pc(j)/pc00(j))**ac(j,r)));

iddet(i)..    id(i)  =e= aid(i)*idshr*invtot;

dstdet(i)..   dst(i) =e= adst(i)*dstshr*invtot;

* domestic budget constraints
hbudget(r).. savh(r) + sum(i, pc(i)*ch(i,r)) =e= sum(ty, yh(ty,r));

gbudget..    sum(i, pq(i)*cg(i)) + sum(ty, gtr(ty)) + savg =e=
             sum(i, sum(j, am(j,i)*tnm(j)*pim(j))*nm(i)
                  + sum(j, a(j,i)*pq(j)*tnd(j))*nd(i)
                  + ((tfm(i) + taum(i))*pim(i)*m(i))$im(i)
                  + tw(i)*sum(r$ri(r,i), w(r))*lw(i)
                  + sum(r$ri(r,i), pls(r))*ls(i)*tw(i)
                  + tk(i)*pk(i)*k(i)*(1 - thetak(i))
                  + tfd(i)*pq(i)*sum(r, ch(i,r))
                  + tfd(i)*pq(i)*id(i));

* market clearing
fddef(i)..   fd(i)  =e= sum(r, ch(i,r)) + id(i) + cg(i);

export(ie).. ex(ie) =e= exscale*aex(ie)*(er00*pie(ie)/(pq(ie)*(1 + trmx(ie))))**eta(ie);

margdet..    marg*sum(ss, pq(ss)) =e= sum(i, trmd(i)*pq(i)*fd(i)) + sum(ie, trmx(ie)*pq(ie)*ex(ie))
                                   +  sum(i, (pim(i)*trmm(i)*m(i))$im(i)
                                   +  sum(j, am(j,i)*pim(j)*trmm(j))*nm(i));

equil(i)..   q(i) + dsa(i) =e= fd(i)  + sum(j, a(i,j)*nd(j)) + ex(i)$ie(i)
                            +  dst(i) + marg$ss(i) + sum(j, g(j))$si(i);

fbudget..   (savf/usdefl)*(er00/er)*sum(i, pc(i)*aid(i))/sum(i, pc00(i)*aid(i))
          +  sum(ie, pq(ie)*(1 + trmx(ie))*ex(ie)) + sum(ty, wtr(ty))
         =e= sum(im, pim(im)*m(im)) + sum(i, sum(j, am(j,i)*pim(j))*nm(i));

* savings and investments
invsav..     sum(r, savh(r)) + (savf/usdefl)*(er00/er)*sum(i, pc(i)*aid(i))/sum(i, pc00(i)*aid(i))
          +  savg + thetai*sum(i, pg(i)*g(i)) + sum(i, thetak(i)*pk(i)*k(i))
         =e= sum(i, dst(i)*pq(i) + id(i)*pc(i)) + sum(si, pq(si))*sum(i, g(i));

utildef(r).. util(r)*pop(r) =e= prod(i, (ch(i,r)-gamma(i,r)*pop(r))**ac(i,r));

obj..        utility =e= psi*((sum(r, pop(r)*util(r)))$(mu = 1)
                             +(1/mu*sum(r, pop(r)*util(r)**mu))$(mu <> 0 and mu <> 1)
                             +(sum(r, pop(r)*log(util(r))))$(not mu))
                      +  ksi*invtot;

$sTitle Variable Initialization
* bounds for variables
y.fx("ynonp",i)  = 0;
wtr.fx(li)       = 0;
gtr.fx(li)       = 0;
fy.fx("ynonp",i) = 0;
fwtr.fx(li)      = 0;
fgtr.fx(li)      = 0;
thetai.fx        = thetai.l;
ls.lo(i)         = .001;
ls.fx(i)$(not ls.l(i)) = 0;

* initial values for variables
util.l(r) = 10;
utility.l = 10;

option  decimals = 5;
display pc.l, pop, gamma, ac, mc.l;

x.lo(i)   = .001;
g.lo(i)   = .001;
z.lo(i)   = .001;
v.lo(i)   = .001;
n.lo(i)   = .001;
fd.lo(i)  = .001;
lw.lo(i)  = .001;
nd.lo(i)  = .001;
nm.lo(i)  = .001;
m.lo(sc)  = .001;
s.lo(i)   = .001;
px.lo(i)  = .001;
pg.lo(i)  = .001;
pz.lo(i)  = .001;
pv.lo(i)  = .001;
pn.lo(i)  = .001;
pc.lo(i)  = .001;
pq.lo(i)  = .001;
w.lo(r)   = .001;
pnd.lo(i) = .001;
pnm.lo(i) = .001;
pm.lo(i)  = .001;
ps.lo(i)  = .001;
pk.lo(i)  = .001;
pls.lo(r) = .001;
mc.lo(r)  = .001;
ym.lo(r)  = .001;

$sTitle Model Definitions
Model
   ganges  'basic version of the India cge'
           / infalloc, wdet,    valueq,  prodq,   firstq,  supply,  pmdef
             taumdet,  valuex,  prodx,   firstx,  valuez,  prodz,   firstz
             valuen,   prodn,   firstn,  pnddet,  pnmdet,  values,  prods
             firsts,   valuev,  prodv,   firstv,  lmclear, pcdet,   cpidet
             yself,    ywage,   ycap,    yinfr,   gtrdet,  wtrdet,  fyself
             fywage,   fycap,   fyinfr,  fgtrdet, fwtrdet, yhdef,   fyhdef
             mean,     meanc,   les,     iddet,   dstdet,  hbudget, fddef
             export,   equil,   margdet, fbudget, invsav,  utildef, obj    /
   ganges0 'base year version with tracking indicators'
           / utildef, obj,     valueq, prodq,   firstq,  pmdef,  supply,  taumdet
             valuex,  prodx,   firstx, valuez,  prodz,   firstz, valuen,  prodn
             firstn,  pnddet,  pnmdet, values,  prods,   firsts, valuev,  prodv
             firstv,  lmclear, pcdet,  cpidet,  yself,   ywage,  ycap,    yinfr
             gtrdet,  wtrdet,  fyself, fywage,  fycap,   fyinfr, fgtrdet, fwtrdet
             yhdef,   fyhdef,  mean,   meanc,   les,     iddet,  dstdet,  hbudget
             fddef,   export,  equil,  margdet, fbudget, invsav, qdep00,  qdep
             qgdp,    qcns,    qgfi,   qchs,    qinv,    qexp,   qimp,    qgdpmp  /;

option limCol = 0;

$sTitle Base Model Closure
g.fx(i)     = g.l(i);
w.fx(r)     = dw(r);
ls.fx(sa)   = ls.l(sa);
savf.fx     = 47.9;
ax.fx(i)    = ax.l(i);
exscale.fx  = 1;
tnd.fx(i)   = tnd.l(i);
tnm.fx(i)   = tnm.l(i);
tfd.fx(i)   = tfd.l(i);
tfm.fx(i)   = tfm.l(i);
tk.fx(i)    = tk.l(i);
tw.fx(i)    = tw.l(i);
taum.fx(sc) = 0;
taum.fx(i)$(not im(i)) = 0;
beta.fx(r)   = beta.l(r);
lambda.fx(r) = lambda.l(r);
m.fx(i)$(not sc(i)) = m.l(i);

solve ganges0 using cns;

ax0(i)   = ax.l(i);
exscale0 = exscale.l;
beta0(r) = beta.l(r);

objgrt..      dumgrt =e= wgdp*sqr(ogdpmp/gdppr - gdpgrt)
                      +  wcns*sqr(ocns/cnspr - cnsgrt)
                      +  winv*sqr(oinv/invpr - invgrt)
                      +  wexp*sqr(oexp/exppr - expgrt)
                      +  wimp*sqr(oimp/imppr - impgrt);

infalloc(i).. g(i) =e= ratinf*dg(i)/sum(j, dg(j))*sum(si, x(si));

wdet(r)..     w(r)*dcpi(r) =e= lambda(r)*cpi(r)*dw(r);

Model track 'ganges with tracking option'
            / infalloc, wdet,    valueq, prodq,   firstq,  supply, pmdef,   taumdet
              valuex,   prodx,   firstx, valuez,  prodz,   firstz, valuen,  prodn
              firstn,   pnddet,  pnmdet, values,  prods,   firsts, valuev,  prodv
              firstv,   lmclear, pcdet,  cpidet,  yself,   ywage,  ycap,    yinfr
              gtrdet,   wtrdet,  fyself, fywage,  fycap,   fyinfr, fgtrdet, fwtrdet
              yhdef,    fyhdef,  mean,   meanc,   les,     iddet,  dstdet,  hbudget
              fddef,    export,  equil,  margdet, fbudget, invsav, objgrt,  qdep00
              qdep,     qgdp,    qcns,   qgfi,    qchs,    qinv,   qexp,    qimp
              qgdpmp,   utildef, obj                                                /;