knp.gms : Kissing Number Problem using Variable Neighborhood Search

Description

Determining the maximum number of k-dimensional spheres of radius
r that can be adjacent to a central sphere of radius r is known
as the Kissing Number Problem (KNP). The problem has been solved
for 2 (6), 3 (12) and very recently for 4 (24) dimensions. Here
is a nonlinear (nonconvex) mathematical programming model known
as the distance formulation for the solution of the KNP. We solve
the problem by using the Variable Neighbourhood Search Algorithm.

http://en.wikipedia.org/wiki/Kissing_number_problem

Kucherenko, S, Belotti, P, Liberti, L, and Maculan, N,
New formulations for the Kissing Number Problem.
Discrete Applied Mathematics, 155:14, 1837--1841, 2007.
http://doi.org/10.1016/j.dam.2006.05.012

Keywords: nonlinear programming, kissing number problem, variable neighborhood search,
          global optimization, sphere packing, mathematics


Reference

  • Kucherenko, S, Belotti, P, Liberti, L, and Maculan, N, New formulations for the Kissing Number Problem. Discrete Applied Mathematics 155, 14 (2007), 1837-1841.

Large Model of Type : NLP


Category : GAMS Model library


Main file : knp.gms

$title Kissing Number Problem using Variable Neighborhood Search (KNP,SEQ=321)

$onText
Determining the maximum number of k-dimensional spheres of radius
r that can be adjacent to a central sphere of radius r is known
as the Kissing Number Problem (KNP). The problem has been solved
for 2 (6), 3 (12) and very recently for 4 (24) dimensions. Here
is a nonlinear (nonconvex) mathematical programming model known
as the distance formulation for the solution of the KNP. We solve
the problem by using the Variable Neighbourhood Search Algorithm.

http://en.wikipedia.org/wiki/Kissing_number_problem

Kucherenko, S, Belotti, P, Liberti, L, and Maculan, N,
New formulations for the Kissing Number Problem.
Discrete Applied Mathematics, 155:14, 1837--1841, 2007.
http://doi.org/10.1016/j.dam.2006.05.012

Keywords: nonlinear programming, kissing number problem, variable neighborhood search,
          global optimization, sphere packing, mathematics
$offText

$eolCom //

$if not set dim      $set dim 4
$if not set nspheres $set nspheres 24

Set
   k 'dimension' / k1*k%dim%      /
   i 'spheres'   / s1*s%nspheres% /;

Alias (i,j);

Variable
   x(i,k) 'position of the center of the i-th sphere around the central sphere'
   z      'feasibility indicator';

Equation
   eq1(i)   'sphere centers have distance 2 from the center sphere'
   eq2(i,j) 'minimum pairwise sphere separation distance';

eq1(i)..                     sum(k, sqr(x(i,k))) =e= 4;

eq2(i,j)$(ord(i) < ord(j)).. sum(k, sqr(x(i,k) - x(j,k))) =g= 4*z;

Model kissing / all /;

Scalar
   lo / -2 /
   up /  2 /;

x.lo(i,k) = lo;
x.up(i,k) = up;
x.l(i,k)  = uniform(lo,up);

Parameter
   p(i,k)  'center points of best solution'
   bestobj 'feasibility indicator of best solution' /   0 /
   bestbnd 'best bound on optimal value'            / inf /
   maxnk   'major iteration limit (search space)'   /  20 /
   maxns   'minor iteration limit (random starts)'  /   5 /
   nk      'major iteration'                        /   1 /
   ns      'minor iteration';

kissing.solveLink = %solveLink.CallScript%;

solve kissing max z using nlp;

* Store solution as best solution
if(kissing.modelStat = %modelStat.locallyOptimal% or
   kissing.modelStat = %modelStat.optimal%        or
   kissing.modelStat = %modelStat.feasibleSolution%,
   bestobj = z.l;
   p(i,k)  = x.l(i,k);
else
* Do not start VNS, if we have no solution
   maxnk = 0;
);

* Store dual bound, if available
bestbnd$(kissing.objEst <> na) = min(bestbnd, kissing.objEst);

* Variable Neighborhood Search Algorithm
option solPrint = off, limRow = 0, limCol = 0;

while(nk <= maxnk and bestobj < 1 and bestbnd >= 1 and kissing.solveStat <> %solveStat.userInterrupt%,
   ns = 1;
   repeat
      // Sample a new point in the neighborhood of best point
      x.l(i,k) = uniform(p(i,k) - nk*(p(i,k) - lo)/maxnk, p(i,k) + nk*(up - p(i,k))/maxnk);

      solve kissing max z using nlp;

      // in case we have no solution make sure z.l is small enough to avoid update of bestobj
      z.l$(kissing.modelStat <> %modelStat.optimal%          and
           kissing.modelStat <> %modelStat.feasibleSolution% and
           kissing.modelStat <> %modelStat.locallyOptimal%) = bestobj - 1;

      // update dual bound
      bestbnd$(kissing.objEst <> na) = min(bestbnd,kissing.objEst);
      ns = ns + 1;
   until(ns = maxns + 1) or (z.l > bestobj) or (bestbnd < 1) or (kissing.solveStat = %solveStat.userInterrupt%);

   if(z.l <= bestobj,
      // enlarge neighborhood and do minor iterations again
      nk = nk + 1;
   else
      // update best bound, recenter neighborhood, and restart with small neighborhood
      bestobj = z.l;
      p(i,k)  = x.l(i,k);
      nk      = 1;
   );
   display bestbnd, bestobj;
);

if(bestobj >= 1,
   display 'KNP(%dim%) >= %nspheres%';
elseIf bestbnd < 1,
   display 'KNP(%dim%) < %nspheres%';
elseIf nk > maxnk,
   display 'Most likely: KNP(%dim%) < %nspheres%';
elseIf maxnk = 0,
   display 'Could not solve initial NLP';
else
   display 'VNS was interrupted';
);