qcp02.gms : Test modsolstat and solution correctness - multiple QCons

Description

set default M and N based on license and type of solver


Small Model of Type : QCP


Category : GAMS Test library


Main file : qcp02.gms

$TITLE Test modsolstat & solution correctness - multiple QCons (QCP02,SEQ=75)

$if not set DEMOSIZE      $set DEMOSIZE   0
$if not set GLOBALSIZE    $set GLOBALSIZE 0
$if not %DEMOSIZE% == 0   $set DEMOSIZE   1
$if not %GLOBALSIZE% == 0 $set GLOBALSIZE 1

* set default M and N based on license and type of solver
$if %DEMOSIZE%%GLOBALSIZE% == 00 $set MM 16
$if %DEMOSIZE%%GLOBALSIZE% == 00 $set NN 16
$if %DEMOSIZE%%GLOBALSIZE% == 01 $set MM  4
$if %DEMOSIZE%%GLOBALSIZE% == 01 $set NN  4
$if %DEMOSIZE%%GLOBALSIZE% == 10 $set MM 15
$if %DEMOSIZE%%GLOBALSIZE% == 10 $set NN  9
$if %DEMOSIZE%%GLOBALSIZE% == 11 $set MM  2
$if %DEMOSIZE%%GLOBALSIZE% == 11 $set NN  1

$if not set M       $set M %MM%
$if not set N       $set N %NN%
$if not set MTYPE   $set MTYPE QCP
$if not set TESTTOL $set TESTTOL 1e-6
scalar mchecks / 0 /;
$if not set QCPMCHECKS $goto qpmchecks
$if not %QCPMCHECKS% == 0 mchecks = 1;
$goto donemcheck
$label qpmchecks
$if not  %QPMCHECKS% == 0 mchecks = 1;
$label donemcheck

$eolcom //

sets
    I   / 0 * %M%, ilast /,
    J   / 0 * %N%, jlast /,
    bndry(I,J)  'boundary of (I,J) grid';

alias(II,I);
alias(JJ,J);

bndry(I,J)$(ord(J) eq card(J) OR ord(J) eq 1) = YES;
bndry(I,J)$(ord(I) eq card(I) OR ord(I) eq 1) = YES;

scalars
xlo     / 0 /,
xhi     / 1 /,
ylo     / 0 /,
yhi     / 1 /,
dx,
dy,
s       / 0.25 /,
c 'force constant' / 1 /;

dx = (xhi - xlo) / (card(I)-1);
dy = (yhi - ylo) / (card(J)-1);

variables
energy,
v(I,J)  'height of membrane';

equations
eq1(I,J),
eq2(I,J),
edef            'energy definition';

edef..          energy =e=
                .25 * sum {(I,J),
                             power(v(I,J)-v(I+1,J),2)*dy/dx
                           + power(v(I,J)-v(I-1,J),2)*dy/dx
                           + power(v(I,J)-v(I,J+1),2)*dx/dy
                           + power(v(I,J)-v(I,J-1),2)*dx/dy
                          }
                - sum {(I,J), c * dx * dy * v(I,J)};

eq1(I,J)..  sqr(v(I,J)-v(I,J+1)) =L= sqr(s * dy);
eq2(I,J)..  sqr(v(I,J)-v(I+1,J)) =L= sqr(s * dx);

model m  / eq1, eq2, edef /;

option decimals = 8;
m.holdfixed = 1;

parameter lb(I,J), ub(I,J);

lb(I,J) = 0;
ub(I,J) = sin(3.2*(xlo + dx*(ord(I)-1))) * sin(3.3*(ylo + dy*(ord(J)-1)));
ub(I,J) = max(ub(I,J),1e-3);

v.lo(I,J) = lb(I,J);
v.up(I,J) = ub(I,J);
v.l(I,J)  = 1;
v.fx(bndry(I,J)) = 0;
v.m(I,J) = 0;
energy.m = 0;  energy.l = 0;
edef.m = 0;
solve m  using %MTYPE% min energy;

scalars
    vtol    /    1e-8 /,
    tol     /    %TESTTOL% /,
    objval;
parameters
    dLdv(I,J)  'dLangrangian/dv'
    dLdvErr(I,J)
    tmp(I,J)
    eq1_l(I,J)
    eq2_l(I,J);

* capability problems is an OK return
if {(m.solvestat = %solvestat.CapabilityProblems%),
  abort$(m.modelstat <> %modelstat.NoSolutionReturned%)           'wrong modelstat for capability error';
  display 'Solver capability error: further tests suppressed';
else
  // should we allow reslim or iterlim?
  abort$(m.solvestat <> %solvestat.NormalCompletion% or (m.modelstat > %modelstat.LocallyOptimal% and m.modelstat <> %modelstat.FeasibleSolution%)) 'wrong status codes';


  objval = .25 * sum {(I,J),
                        power(v.l(I,J)-v.l(I+1,J),2)*dy/dx
                      + power(v.l(I,J)-v.l(I-1,J),2)*dy/dx
                      + power(v.l(I,J)-v.l(I,J+1),2)*dx/dy
                      + power(v.l(I,J)-v.l(I,J-1),2)*dx/dy
                     }
               - sum {(I,J), c * dx * dy * v.l(I,J)};

  // first compute dLdv
  dLdv(I,J) = -c * dx * dy
             + (dy/dx) * (2*v.l(I,J) - v.l(I+1,J) - v.l(I-1,J))
             + (dx/dy) * (2*v.l(I,J) - v.l(I,J+1) - v.l(I,J-1));
  dLdv(I,J) = dLdv(I,J)
     - 2*eq1.m(I,J)  *( v.l(I,J)  -v.l(I,J+1))
     - 2*eq1.m(I,J-1)*(-v.l(I,J-1)+v.l(I,J)  )
     - 2*eq2.m(I  ,J)*( v.l(I  ,J)-v.l(I+1,J))
     - 2*eq2.m(I-1,J)*(-v.l(I-1,J)+v.l(I  ,J));
  // dLdv perpto v.lo <= v <= v.up, so allow for this here
  tmp(I,J) = max(dLdv(I,J), 0);
  dLdvErr(I,J) = min(1, max(v.l(I,J)-v.lo(I,J),0)) * tmp(I,J);
  tmp(I,J) = max(-dLdv(I,J), 0);
  dLdvErr(I,J) = max [dLdvErr(I,J),
                 min(1, max(v.up(I,J)-v.l(I,J),0)) * tmp(I,J) ];

  eq1_l(I,J) = sqr(v.l(I,J)-v.l(I,J+1));
  eq2_l(I,J) = sqr(v.l(I,J)-v.l(I+1,J));

  abort$(abs(energy.l-objval) > tol)                    'bad energy.l';
  abort$(abs(edef.l) > tol)                             'bad edef.l';

  abort$(smin{(I,J),v.l (I,J)-v.lo(I,J)} < -vtol)       'bad v.lo test';
  abort$(smin{(I,J),v.up(I,J)-v.l (I,J)} < -vtol)       'bad v.up test';

  abort$(smax{(I,J),eq1_l(I,J) - sqr(s * dy)} > tol)    'bad eq1';
  abort$(smax{(I,J),abs(eq1.l(I,J)-eq1_l(I,J))} > tol)  'bad eq1.l';
  abort$(smax{(I,J),eq2_l(I,J) - sqr(s * dx)} > tol)    'bad eq2';
  abort$(smax{(I,J),abs(eq2.l(I,J)-eq2_l(I,J))} > tol)  'bad eq2.l';

  if {mchecks,
    abort$(abs(energy.m) > tol)                           'bad energy.m';
    abort$(abs(edef.m-1) > tol)                           'bad edef.m';
    abort$(smax{(I,J),eq1.m(I,J)} > tol)                  'bad eq1.m';
    abort$(smax{(I,J),eq2.m(I,J)} > tol)                  'bad eq2.m';
    abort$(smax{(I,J),dLdvErr(I,J)} > tol)                'bad dLdvErr';
  };

  display 'All tests passed';
};